Space News
space history and artifacts articles

Messages
space history discussion forums

Sightings
worldwide astronaut appearances

Resources
selected space history documents

  collectSPACE: Messages
  Satellites - Robotic Probes
  NASA InSight lander to probe Mars' interior (Page 1)

Post New Topic  Post A Reply
profile | register | preferences | faq | search


This topic is 2 pages long:   1  2 
next newest topic | next oldest topic
Author Topic:   NASA InSight lander to probe Mars' interior
Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 08-20-2012 02:40 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
InSight lander to probe into Mars

InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is a NASA Discovery Program mission that will place a single geophysical lander on Mars to study its deep interior. But InSight is more than a Mars mission — it is a terrestrial planet explorer that will address one of the most fundamental issues of planetary and solar system science — understanding the processes that shaped the rocky planets of the inner solar system (including Earth) more than four billion years ago.

By using sophisticated geophysical instruments, InSight will delve deep beneath the surface of Mars, detecting the fingerprints of the processes of terrestrial planet formation, as well as measuring the planet's "vital signs": Its "pulse" (seismology), "temperature" (heat flow probe), and "reflexes" (precision tracking).

Why Mars?

Previous missions to Mars have investigated the surface history of the Red Planet by examining features like canyons, volcanoes, rocks and soil, but no one has attempted to investigate the planet's earliest evolution — its building blocks — which can only be found by looking far below the surface.

Because Mars has been less geologically active than the Earth (for example, it does not have plate tectonics), it actually retains a more complete record of its history in its own basic planetary building blocks: its core, mantle and crust.

By studying the size, thickness, density and overall structure of the Red Planet's core, mantle and crust, as well as the rate at which heat escapes from the planet's interior, the InSight mission will provide glimpses into the evolutionary processes of all of the rocky planets in the inner solar system.

In terms of fundamental processes that shape planetary formation, Mars is a veritable "Goldilocks" planet, because it is big enough to have undergone the earliest internal heating and differentiation (separation of the crust, mantle and core) processes that shaped the terrestrial planets (Earth, Venus, Mercury, Moon), but small enough to have retained the signature of those processes over the next four billion years. Within its own structural signature, Mars may contain the most in-depth and accurate record in the solar system of these processes.

The InSight mission will follow the legacy of NASA's Mars Phoenix mission and send a lander to Mars, which will delve deeper into the surface than any other spacecraft - to investigate the planet's structure and composition as well as its tectonic activity as it relates to all terrestrial planets, including Earth.

Objectives

The InSight mission will seek to understand the evolutionary formation of rocky planets, including Earth, by investigating the interior structure and processes of Mars. InSight will also investigate the dynamics of Martian tectonic activity and meteorite impacts, which could offer clues about such phenomena on Earth.

Spacecraft and Payload

The InSight mission is similar in design to the Mars lander that the Phoenix mission used successfully in 2007 to study ground ice near the north pole of Mars. The reuse of this technology, developed and built by Lockheed-Martin Space Systems in Denver, CO, will provide a low-risk path to Mars without the added cost of designing and testing a new system from scratch.

The InSight lander will be equipped with two science instruments that will conduct the first "check-up" of Mars in more than 4.5 billion years, measuring its "pulse", or internal activity; its temperature; and its "reflexes" (the way the planet wobbles when it is pulled by the Sun and its moons). Scientists will be able to interpret this data to understand the planet's history, its interior structure and activity, and the forces that shaped rocky planet formation in the inner solar system.

The science payload is comprised of two instruments: the Seismic Experiment for Interior Structure (SEIS), provided by the French Space Agency (CNES), with the participation of the Institut de Physique du Globe de Paris (IPGP), the Swiss Federal Institute of Technology (ETH), the Max Planck Institute for Solar System Research (MPS), Imperial College and the Jet Propulsion Laboratory (JPL); and the Heat Flow and Physical Properties Package (HP3), provided by the German Space Agency (DLR).

In addition, the Rotation and Interior Structure Experiment (RISE), led by JPL, will use the spacecraft communication system to provide precise measurements of planetary rotation.

Mission Details

InSight is slated for a March 2016 launch date and set to arrive on the surface of Mars in late 2016. It will rely on proven technologies used on NASA's Mars Phoenix mission, and will send a lander to the Martian surface that will spend two years investigating the deep interior of Mars — as well as the processes that not only shaped the Red Planet, but also rocky planets throughout the inner solar system.

InSight Key Dates

  • Launch: March 8 - March 27, 2016
  • Landing: September 20, 2016
  • Surface operations: 720 days / 700 sols
  • First science return: October 2016
  • Instrument deployment: 60 sols (including 20 sols margin)
  • Data volume over 1 Martian year: More than 29 Gb (processed seismic data posted to the web in 2 weeks; remaining science data less than 3 months, no proprietary period)
  • End of Mission: September 18, 2018
See here for discussion of NASA's InSight mission to drill into Mars.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 08-20-2012 03:49 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA mission to take first look deep inside Mars

NASA has selected a new mission, set to launch in 2016, that will take the first look into the deep interior of Mars to see why the Red Planet evolved so differently from Earth as one of our solar system's rocky planets.

The new mission, named InSight, will place instruments on the Martian surface to investigate whether the core of Mars is solid or liquid like Earth's and why Mars' crust is not divided into tectonic plates that drift like Earth's. Detailed knowledge of the interior of Mars in comparison to Earth will help scientists understand better how terrestrial planets form and evolve.

"The exploration of Mars is a top priority for NASA, and the selection of InSight ensures we will continue to unlock the mysteries of the Red Planet and lay the groundwork for a future human mission there," NASA Administrator Charles Bolden said. "The recent successful landing of the Curiosity rover has galvanized public interest in space exploration and today's announcement makes clear there are more exciting Mars missions to come."

InSight will be led by W. Bruce Banerdt at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif. InSight's science team includes U.S. and international co-investigators from universities, industry and government agencies. The French space agency Centre National d'Etudes Spatiales, or CNES, and the German Aerospace Center, or DLR, are contributing instruments to InSight, which is scheduled to land on Mars in September 2016 to begin its two-year scientific mission.

InSight is the 12th selection in NASA's series of Discovery-class missions. Created in 1992, the Discovery Program sponsors frequent, cost-capped solar system exploration missions with highly focused scientific goals. NASA requested Discovery mission proposals in June 2010 and received 28. InSight was one of three proposed missions selected in May 2011 for funding to conduct preliminary design studies and analyses. The other two proposals were for missions to a comet and Saturn's moon Titan.

InSight builds on spacecraft technology used in NASA's highly successful Phoenix lander mission, which was launched to the Red Planet in 2007 and determined water existed near the surface in the Martian polar regions. By incorporating proven systems in the mission, the InSight team demonstrated that the mission concept was low-risk and could stay within the cost-constrained budget of Discovery missions. The cost of the mission, excluding the launch vehicle and related services, is capped at $425 million in 2010 dollars.

"Our Discovery Program enables scientists to use innovative approaches to answering fundamental questions about our solar system in the lowest cost mission category," said John Grunsfeld, associate administrator for the Science Mission Directorate at NASA Headquarters. "InSight will get to the 'core' of the nature of the interior and structure of Mars, well below the observations we've been able to make from orbit or the surface."

InSight will carry four instruments. JPL will provide an onboard geodetic instrument to determine the planet's rotation axis and a robotic arm and two cameras used to deploy and monitor instruments on the Martian surface. CNES is leading an international consortium that is building an instrument to measure seismic waves traveling through the planet's interior. The German Aerospace Center is building a subsurface heat probe to measure the flow of heat from the interior.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Discovery Program for the agency's Science Mission Directorate in Washington.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 09-04-2013 01:45 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA Evaluates Four Candidate Sites for 2016 Mars Mission

NASA has narrowed to four the number of potential landing sites for the agency's next mission to the surface of Mars, a 2016 lander to study the planet's interior.

The stationary Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport (InSight) lander is scheduled to launch in March 2016 and land on Mars six months later. It will touch down at one of four sites selected in August from a field of 22 candidates. All four semi-finalist spots lie near each other on an equatorial plain in an area of Mars called Elysium Planitia.

"We picked four sites that look safest," said geologist Matt Golombek of NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif. Golombek is leading the site-selection process for InSight. "They have mostly smooth terrain, few rocks and very little slope."

Scientists will focus two of NASA's Mars Reconnaissance Orbiter cameras on the semi-finalists in the coming months to gain data they will use to select the best of the four sites well before InSight is launched.

The mission will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth. Unlike previous Mars landings, what is on the surface in the area matters little in the choice of a site except for safety considerations.

"This mission's science goals are not related to any specific location on Mars because we're studying the planet as a whole, down to its core," said Bruce Banerdt, InSight principal investigator at JPL. "Mission safety and survival are what drive our criteria for a landing site."

Each semifinalist site is an ellipse measuring 81 miles (130 kilometers) from east to west and 17 miles (27 kilometers) from north to south. Engineers calculate the spacecraft will have a 99-percent chance of landing within that ellipse, if targeted for the center.

Elysium is one of three areas on Mars that meet two basic engineering constraints for InSight. One requirement is being close enough to the equator for the lander's solar array to have adequate power at all times of the year. Also, the elevation must be low enough to have sufficient atmosphere above the site for a safe landing. The spacecraft will use the atmosphere for deceleration during descent.

All four semifinalist sites, as well as the rest of the 22 of the candidate sites studied, are in Elysium Planitia. The only other two areas of Mars meeting the requirements of being near the equator at low elevation, Isidis Planitia and Valles Marineris, are too rocky and windy. Valles Marineris also lacks any swath of flat ground large enough for a safe landing.

InSight also needs penetrable ground, so it can deploy a heat-flow probe that will hammer itself 3 yards to 5 yards into the surface to monitor heat coming from the planet's interior. This tool can penetrate through broken-up surface material or soil, but could be foiled by solid bedrock or large rocks.

"For this mission, we needed to look below the surface to evaluate candidate landing sites,"Golombek said.

InSight's heat probe must penetrate the ground to the needed depth, so scientists studied Mars Reconnaissance Orbiter images of large rocks near Martian craters formed by asteroid impacts. Impacts excavate rocks from the subsurface, so by looking in the area surrounding craters, the scientists could tell if the subsurface would have probe-blocking rocks lurking beneath the soil surface.

InSight also will deploy a seismometer on the surface and will use its radio for scientific measurements.

JPL manages InSight for NASA's Science Mission Directorate in Washington. The French space agency, Centre National d'Etudes Spatiales, and the German Aerospace Center are contributing instruments to the mission. Lockheed Martin Space Systems, Denver, is building the spacecraft.

InSight is part of NASA's Discovery Program, which NASA's Marshall Space Flight Center in Huntsville, Ala., manages. InSight's team includes U.S. and international co-investigators from universities, industry and government agencies.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 05-19-2014 06:26 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA 2016 Mars mission to begin building spacecraft

The team preparing NASA's next Mars lander mission gained a green light today to begin building the spacecraft, which will study how Earthlike planets form. Lockheed Martin will now begin building the InSight spacecraft.

The InSight mission will launch from California in March 2016 and touch down on Mars six months later. The stationary lander's robotic arm will then deploy surface and burrowing instruments from France and Germany to investigate the planet's interior.

InSight team leaders presented mission-design results this week to a NASA review board, and the board then gave approval for advancing to the next stage of preparation.

"The completion of the critical design review marks a major transition for the project," said InSight Project Manager Tom Hoffman of NASA's Jet Propulsion Laboratory. "We move from doing the design and analysis to building and testing the hardware and software that will get us to Mars and collect the science that we need to achieve mission success. Our partners across the globe have made significant progress in getting to this point and are fully prepared to deliver their hardware to system integration starting this November, which is the next major milestone for the project."

InSight adapts a Lockheed Martin spacecraft design from the successful NASA Phoenix Mars Lander, which examined ice and soil on far-northern Mars in 2008, but InSight will study a different aspect of planetary history with instruments never previously used on Mars. The mission will investigate how Earth and other rocky planets developed their layered inner structure of core, mantle and crust, and will gain information about those interior zones.

"We will incorporate many features from our Phoenix lander into InSight, but the differences between the missions require some modifications for the InSight spacecraft," said Stu Spath, InSight program manager for Lockheed Martin Space Systems. "For example, the InSight mission duration is 630 days longer than Phoenix, which means that the lander will have to endure a wider range of environmental conditions on the surface."

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 11-17-2014 10:57 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
Lockheed Martin release
Lockheed Martin Begins Final Assembly of NASA's Next Mars Lander

InSight Mars Lander Starts Taking Shape in Clean Room

Lockheed Martin has started the assembly, test and launch operations (ATLO) phase for NASA's InSight Mars lander spacecraft. The InSight mission will record the first-ever measurements of the interior of the red planet, giving scientists unprecedented detail into the evolution of Mars and other terrestrial planets. InSight is scheduled to launch in March 2016.

A critical stage in the program, ATLO is when assembly of the spacecraft starts, moves through environmental testing and concludes with its launch. Over the next six months, technicians will install subsystems such as avionics, power, telecomm, mechanisms, thermal systems, and guidance, navigation and control. Science instruments will also be delivered by the mission partners to Lockheed Martin for integration with the spacecraft.

Above: Technicians in a Lockheed Martin clean room prepare NASA's InSight Mars lander for propulsion proof and leak testing on Oct. 31, 2014. Following the test, the lander was moved to another clean room where it will undergo the assembly phase of ATLO during the next six months.

In addition to the lander, the spacecraft's protective aeroshell capsule and cruise stage (which provides communications, power and propellant during the journey to Mars) are also undergoing assembly and testing alongside the lander. Once the spacecraft has been fully assembled, it will undergo rigorous environmental testing in the summer of 2015.

"The InSight mission is a mix of tried-and-true and new-and-exciting. The spacecraft has a lot of heritage from Phoenix and even back to the Viking landers, but the science has never been done before at Mars," said Stu Spath, InSight program manager at Lockheed Martin Space Systems. "Physically, InSight looks very much like the Phoenix lander we built, but most of the electronic components are similar to what is currently flying on the MAVEN spacecraft."

InSight stands for "Interior Exploration using Seismic Investigations, Geodesy and Heat Transport" and it is more than a Mars mission. This NASA Discovery-class mission is a terrestrial planet explorer that will address one of the most fundamental issues of planetary and solar system science; understanding the processes that shaped the rocky planets of the inner solar system (including Earth) more than four billion years ago.

The InSight mission is led by Bruce Banerdt of the Jet Propulsion Laboratory (JPL). The science team includes U.S. and international co-investigators from universities, industry and government agencies. The German Aerospace Center (DLR) and the French space agency (CNES) are also each contributing an instrument to the two-year scientific mission.

Along with providing an onboard geodetic instrument to determine the planet's rotation axis, plus a robotic arm and two cameras used to deploy and monitor instruments on the Martian surface, JPL performs project management for NASA's Science Mission Directorate. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the overall Discovery Program for the agency's Science Mission Directorate in Washington.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 03-04-2015 07:24 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Single Site on Mars Advanced for 2016 NASA Lander

NASA's next mission to Mars, scheduled to launch one year from today to examine the Red Planet's deep interior and investigate how rocky planets like Earth evolved, now has one specific site under evaluation as the best place to land and deploy its science instruments.

The mission called InSight — an acronym for "Interior Exploration using Seismic Investigations, Geodesy and Heat Transport" — is scheduled to launch from Vandenberg Air Force Base, California. The launch period runs from March 4 to March 30, 2016, and will mark the first California launch of an interplanetary mission. Installation of science-instrument hardware onto the spacecraft has begun and a key review has given thumbs up to integration and testing of the mission's component systems from several nations participating in the international project.

The landing-site selection process evaluated four candidate locations selected in 2014. The quartet is within the flat-lying "Elysium Planitia," less than five degrees north of the equator, and all four appear safe for InSight's landing. The single site will continue to be analyzed in coming months for final selection later this year. If unexpected problems with this site are found, one of the others would be imaged and could be selected. The favored site is centered at about four degrees north latitude and 136 degrees east longitude.

"This is wondrous terrain, exactly what we want to land on because it is smooth, flat, with very few rocks in the highest-resolution images," said InSight's site-selection leader, Matt Golombek of NASA's Jet Propulsion Laboratory, Pasadena, California.

Mars orbiters have provided detailed information about the candidate sites, which are mapped as landing ellipses about 81 miles (130 kilometers) west-to-east by about 17 miles (27 kilometers) north-to-south. An ellipse covers the area within which InSight has odds of about 99 percent of landing, if targeted for the ellipse center. Several types of terrain, such as "cratered," "etched" and "smooth" were mapped in each ellipse. The one chosen for final evaluations has highest proportion in the smooth category.

After InSight reaches Mars on Sept. 28, 2016, the mission will assess properties of the planet's crust, mantle and core. The interior of Mars has not been churned as much as Earth's because Mars lacks the tectonic activity that recycles Earth's crustal plates back into the mantle. Thus, Mars offers an opportunity to find clues no longer present on Earth about how rocky planets such as Earth, Mars, Venus and Mercury formed and evolved.

InSight's primary science will study the planet's interior, not surface features. Besides safety for the landing, the main site-selection criterion is for the ground within reach of the lander's robotic arm to be penetrable for a heat-flow probe designed to hammer itself into the soil to a depth three to five yards, or meters.

Evidence that the ground will be suitable for the probe, rather than rock solid, comes from assessment by the Thermal Imaging System on NASA's Mars Odyssey orbiter of how quickly the ground cools at night or warms in sunlight, and evaluation of images from the High Resolution Imaging Science Experiment on NASA's Mars Reconnaissance Orbiter.

The heat-flow probe is a key part of InSight's Heat Flow and Physical Properties Package (HP3) provided by the German Aerospace Center (DLR). Electronics for that instrument were the first hardware from the science payload put onto the InSight spacecraft being assembled and tested at Lockheed Martin Space Systems, Denver.

"As flight components such as the HP3 electronics become available, our team continues to integrate them on the spacecraft and test their functionality," said Stu Spath, InSight spacecraft program manager at Lockheed Martin. "We're steadily marching toward the start of spacecraft environmental testing this spring."

InSight's robotic arm will also place another science instrument onto the ground. This is the Seismic Experiment for Interior Structure, or SEIS, from the French Space Agency (CNES), with components from Germany, Switzerland, the United Kingdom and the United States.

A third experiment will use the radio link between InSight and NASA's Deep Space Network antennas on Earth to measure precisely a wobble in Mars' rotation that could reveal whether the planet has a molten or solid core. Wind and temperature sensors from Spain's Center for Astrobiology and a pressure sensor will monitor weather, and a magnetometer will measure magnetic disturbances.

The project passed its System Integration Review in February. "A panel of experts from outside the project reviewed the system-level integration and test program," said InSight Project Manager Tom Hoffman, of JPL. "For Insight, there are multiple systems being brought together from several countries for final integration and testing in Denver."

InSight and other NASA current and future projects will help inform the journey to Mars, an agency priority to send humans to the Red Planet in the 2030s.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 05-27-2015 03:49 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA Begins Testing Mars Lander in Preparation for Next Mission to Red Planet

Testing is underway on NASA's next mission on the journey to Mars, a stationary lander scheduled to launch in March 2016.

Above: Engineers and technicians at Lockheed Martin Space Systems, Denver, run a test of deploying the solar arrays on NASA's InSight lander. Photo taken April 30, 2015. CREDIT: NASA/JPL/Lockheed Martin

The lander is called InSight, an abbreviation for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport. It is about the size of a car and will be the first mission devoted to understanding the interior structure of the Red Planet. Examining the planet's deep interior could reveal clues about how all rocky planets, including Earth, formed and evolved.

The current testing will help ensure InSight can operate in and survive deep space travel and the harsh conditions of the Martian surface. The spacecraft will lift off from Vandenberg Air Force Base in California, and land on Mars about six months later.

The technical capabilities and knowledge gained from Insight, and other Mars missions, are crucial to NASA's journey to Mars, which includes sending astronauts to the Red Planet in the 2030s.

"Today, our robotic scientific explorers are paving the way, making great progress on the journey to Mars," said Jim Green, director of NASA's Planetary Science Division at the agency's headquarters in Washington. "Together, humans and robotics will pioneer Mars and the solar system."

During the environmental testing phase at Lockheed Martin's Space Systems facility near Denver, the lander will be exposed to extreme temperatures, vacuum conditions of nearly zero air pressure simulating interplanetary space, and a battery of other tests over the next seven months. The first will be a thermal vacuum test in the spacecraft's "cruise" configuration, which will be used during its seven-month journey to Mars. In the cruise configuration, the lander is stowed inside an aeroshell capsule and the spacecraft's cruise stage — for power, communications, course corrections and other functions on the way to Mars — is fastened to the capsule.

"The assembly of InSight went very well and now it's time to see how it performs," said Stu Spath, InSight program manager at Lockheed Martin Space Systems, Denver. "The environmental testing regimen is designed to wring out any issues with the spacecraft so we can resolve them while it's here on Earth. This phase takes nearly as long as assembly, but we want to make sure we deliver a vehicle to NASA that will perform as expected in extreme environments."

Other tests include vibrations simulating launch and checking for electronic interference between different parts of the spacecraft. The testing phase concludes with a second thermal vacuum test in which the spacecraft is exposed to the temperatures and atmospheric pressures it will experience as it operates on the Martian surface.

The mission's science team includes U.S. and international co-investigators from universities, industry and government agencies.

"It's great to see the spacecraft put together in its launch configuration," said InSight Project Manager Tom Hoffman at NASA's Jet Propulsion Laboratory (JPL), Pasadena, California. "Many teams from across the globe have worked long hours to get their elements of the system delivered for these tests. There still remains much work to do before we are ready for launch, but it is fantastic to get to this critical milestone."

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 12-04-2015 07:19 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Mars Mission Team Addressing Vacuum Leak on Key Science Instrument

A key science instrument that will be carried aboard NASA's Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport (InSight) spacecraft being prepared for launch in March 2016 is experiencing a leak in the vacuum container carrying its main sensors. The sensors are part of an instrument called the Seismic Experiment for Interior Structure (SEIS), which is provided by the French Space Agency (CNES).

The seismometer is the prime science payload that will help answer questions about the interior structure and processes within the deep Martian interior. The SEIS instrument has three high-sensitivity seismometers enclosed in a sealed sphere. The seismometers need to operate in a vacuum in order to provide exquisite sensitivity to ground motions as small as the width of an atom. After the final sealing of the sphere, a small leak was detected, that would have prevented meeting the science requirements once delivered to the surface of Mars.

The CNES/JPL team is currently working to repair the leak, prior to instrument integration and final environmental tests in France before shipping to the United States for installation into the spacecraft and launch.

The InSight lander has completed assembly and testing at Lockheed Martin Space Systems in Colorado, and is being prepared to ship to the Vandenberg AFB launch site. Installation of the seismometer is planned for early January. The Heat Flow and Physical Properties Package (HP3) from Germany and the rest of the scientific payload are already installed.

NASA and CNES managers are committed to launching in March and are currently assessing the launch window timeline. This will be the first launch on the West Coast of a Mars mission and the first project devoted to investigating the deep interior of the Red Planet.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 12-17-2015 11:35 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
Lockheed Martin release
Next Stop: Mars – Lockheed Martin Delivers NASA's InSight Spacecraft to Launch Site

Next Mission to Mars Working Toward a March Launch

NASA's latest mission to Mars took its next step on its long journey to the Red Planet. On Dec. 16, Lockheed Martin (NYSE: LMT) delivered NASA's InSight spacecraft to Vandenberg Air Force Base, California. The lander will now undergo final processing in preparation for a March launch aboard a United Launch Alliance Atlas V 401 rocket.

Above: A Lockheed Martin team shipped NASA's InSight Mars lander from Colorado where it was built to Vandenberg Air Force Base, California where it will launch to Mars in March 2016.

The InSight lander will study the deep interior of Mars and will address one of the most fundamental questions of planetary and solar system science: how did the planets form? The mission will help scientists understand the processes that shaped the rocky planets of the inner solar system more than four billion years ago. Lockheed Martin designed and built the spacecraft and is responsible for testing, launch processing and mission operations.

InSight was previously scheduled to ship to California in early January, but delivery was moved three and a half weeks early to provide more time at the launch site for the integration of the seismometer instrument (SEIS) developed by the French Space Agency, CNES.

"We've worked closely with the Jet Propulsion Laboratory to design and build an amazing spacecraft, one that is based on our Mars Phoenix design that successfully landed on Mars in 2008," said Stu Spath, InSight program manager at Lockheed Martin Space Systems Company. "The spacecraft and its environmental testing are complete, and now the launch team is moving to California to perform final preparations for a March launch."

The 1,380-pound spacecraft, consisting of the lander, aeroshell and cruise stage, was shipped aboard a U.S. Air Force transport plane in an environmentally controlled container. The plane, spacecraft and support personnel took off from Buckley Air Force Base in Aurora, Colorado and touched down at Vandenberg Air Force Base. While at Vandenberg at the Astrotech Space Operations facility, the spacecraft will undergo final processing including the installation and testing of the SEIS instrument, system-level checkout, propellant loading and a spin balance test.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 12-22-2015 03:18 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
collectSPACE
NASA's InSight Mars lander grounded on Earth, will miss 2016 launch

A NASA mission to study the deep interior of Mars has been grounded on Earth for at least the next two years due to a leak discovered in one of the robotic lander's sensitive scientific instruments.

NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft was scheduled to launch to the Red Planet in March 2016. On Tuesday (Dec. 22), NASA managers decided to delay the mission after running out of time to troubleshoot a problem with its vacuum-sealed seismometer, which was designed and is being provided by France's Centre National Études Spatiales (CNES).

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 03-09-2016 08:27 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA Targets May 2018 Launch of Mars InSight Mission

NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission to study the deep interior of Mars is targeting a new launch window that begins May 5, 2018, with a Mars landing scheduled for Nov. 26, 2018.

InSight's primary goal is to help us understand how rocky planets – including Earth – formed and evolved. The spacecraft had been on track to launch this month until a vacuum leak in its prime science instrument prompted NASA in December to suspend preparations for launch.

InSight project managers recently briefed officials at NASA and France's space agency, Centre National d'Études Spatiales (CNES), on a path forward; the proposed plan to redesign the science instrument was accepted in support of a 2018 launch.

"The science goals of InSight are compelling, and the NASA and CNES plans to overcome the technical challenges are sound," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate in Washington. "The quest to understand the interior of Mars has been a longstanding goal of planetary scientists for decades. We're excited to be back on the path for a launch, now in 2018."

NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California, will redesign, build and conduct qualifications of the new vacuum enclosure for the Seismic Experiment for Interior Structure (SEIS), the component that failed in December. CNES will lead instrument level integration and test activities, allowing the InSight Project to take advantage of each organization's proven strengths. The two agencies have worked closely together to establish a project schedule that accommodates these plans, and scheduled interim reviews over the next six months to assess technical progress and continued feasibility.

The cost of the two-year delay is being assessed. An estimate is expected in August, once arrangements with the launch vehicle provider have been made.

The seismometer instrument's main sensors need to operate within a vacuum chamber to provide the exquisite sensitivity needed for measuring ground movements as small as half the radius of a hydrogen atom. The rework of the seismometer's vacuum container will result in a finished, thoroughly tested instrument in 2017 that will maintain a high degree of vacuum around the sensors through rigors of launch, landing, deployment and a two-year prime mission on the surface of Mars.

The InSight mission draws upon a strong international partnership led by Principal Investigator Bruce Banerdt of JPL. The lander's Heat Flow and Physical Properties Package is provided by the German Aerospace Center (DLR). This probe will hammer itself to a depth of about 16 feet (five meters) into the ground beside the lander.

SEIS was built with the participation of the Institut de Physique du Globe de Paris and the Swiss Federal Institute of Technology, with support from the Swiss Space Office and the European Space Agency PRODEX program; the Max Planck Institute for Solar System Research, supported by DLR; Imperial College, supported by the United Kingdom Space Agency; and JPL.

"The shared and renewed commitment to this mission continues our collaboration to find clues in the heart of Mars about the early evolution of our solar system," said Marc Pircher, director of CNES's Toulouse Space Centre.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 09-02-2016 10:35 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA Approves 2018 Launch of Mars InSight

NASA is moving forward with a spring 2018 launch of its InSight mission to study the deep interior of Mars, following final approval this week by the agency's Science Mission Directorate.

The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission was originally scheduled to launch in March of this year, but NASA suspended launch preparations in December due to a vacuum leak in its prime science instrument, the Seismic Experiment for Interior Structure (SEIS).

The new launch period for the mission begins May 5, 2018, with a Mars landing scheduled for Nov. 26, 2018. The next launch opportunity is driven by orbital dynamics, so 2018 is the soonest the lander can be on its way.

"Our robotic scientific explorers such as InSight are paving the way toward an ambitious journey to send humans to the Red Planet," said Geoff Yoder, acting associate administrator for NASA's Science Mission Directorate, in Washington. "It's gratifying that we are moving forward with this important mission to help us better understand the origins of Mars and all the rocky planets, including Earth."

The SEIS instrument — designed to measure ground movements as small as half the radius of a hydrogen atom — requires a perfect vacuum seal around its three main sensors in order to withstand harsh conditions on the Red Planet. Under what's known as the mission "replan," NASA's Jet Propulsion Laboratory in Pasadena, California, will be responsible for redesigning, developing and qualifying the instrument's evacuated container and the electrical feedthroughs that failed previously. France's space agency, the Centre National d'Études Spatiales (CNES), will focus on developing and delivering the key sensors for SEIS, integration of the sensors into the container, and the final integration of the instrument onto the spacecraft.

The German Aerospace Center (DLR) is contributing the Heat Flow and Physical Properties Package (HP3) to InSight's science payload.

NASA's budget for InSight was $675 million. The instrument redesign and two-year delay add $153.8 million. The additional cost will not delay or cancel any current missions, though there may be fewer opportunities for new missions in future years, from fiscal years 2017-2020.

InSight's primary goal is to help us understand how rocky planets formed and evolved. Jim Green, director of NASA's Planetary Science Division, said, "We've concluded that a replanned InSight mission for launch in 2018 is the best approach to fulfill these long-sought, high-priority science objectives."

CNES President Jean-Yves Le Gall added, "This confirmation of the launch plan for InSight is excellent news and an unparalleled opportunity to learn more about the internal structure of the Red Planet, which is currently of major interest to the international science community."

The InSight Project is managed by JPL for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the spacecraft. InSight is part of NASA's Discovery Program, which is managed by NASA's Marshall Space Flight Center in Huntsville, Alabama.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 11-22-2017 12:33 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
Lockheed Martin photo release
Validating NASA's Next Mission to Mars

The Lockheed Martin-built InSight Mars lander has completed thermal vacuum testing, preparing the spacecraft for the long journey to the Red Planet.

Preparing a spacecraft for a grueling six month journey to Mars is no easy task, but the engineers at Lockheed Martin have proven the design of NASA's next mission to Mars – InSight. The InSight lander is the first mission to focus on examining the deep interior of Mars and is scheduled for launch in May 2018.

Thermal vacuum (TVAC) testing is the most comprehensive testing you can perform on a fully assembled spacecraft prior to its launch. Using a special depressurized chamber, TVAC stresses the design and assembly of the system, validating its integrity and operational capabilities in a simulated, harsh, space-like environment.

This milestone came after a long stream of rigorous tests including solar array deployments and electromagnetic interference and compatibility testing. With InSight coming out of TVAC, the team at Lockheed Martin has successfully completed the environmental testing phase and will be finalizing launch preparations over the coming months.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 01-23-2018 08:33 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's Next Mars Lander Spreads its Solar Wings

NASA's next mission to Mars passed a key test Tuesday (Jan. 23), extending the solar arrays that will power the InSight spacecraft once it lands on the Red Planet this November.

Above: The solar arrays on NASA's InSight Mars lander were deployed as part of testing conducted Jan. 23, 2018, at Lockheed Martin Space in Littleton, Colorado. (Lockheed Martin Space)

The test took place at Lockheed Martin Space just outside of Denver, where InSight was built and has been undergoing testing ahead of its launch. The mission is led by NASA's Jet Propulsion Laboratory in Pasadena, California.

The solar arrays on NASA's InSight Mars lander were deployed as part of testing conducted Jan. 23, 2018, at Lockheed Martin Space in Littleton, Colorado. Engineers and technicians evaluated the solar arrays and performed an illumination test to confirm that the solar cells were collecting power. The launch window for InSight opens May 5, 2018. Image Credit: Lockheed Martin Space › Full image and caption

NASA's next mission to Mars passed a key test Tuesday, extending the solar arrays that will power the InSight spacecraft once it lands on the Red Planet this November.

Above: While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. (Lockheed Martin Space)

The test took place at Lockheed Martin Space just outside of Denver, where InSight was built and has been undergoing testing ahead of its launch. The mission is led by NASA's Jet Propulsion Laboratory in Pasadena, California.

"This is the last time we will see the spacecraft in landed configuration before it arrives at the Red Planet," said Scott Daniels, Lockheed Martin InSight Assembly, Test and Launch Operations (ATLO) Manager. "There are still many steps we have to take before launch, but this is a critical milestone before shipping to Vandenberg Air Force Base in California." The InSight launch window opens in May.

The fan-like solar panels are specially designed for Mars' weak sunlight, caused by the planet's distance from the Sun and its dusty, thin atmosphere. The panels will power InSight for at least one Martian year (two Earth years) for the first mission dedicated to studying Mars' deep interior. InSight's full name is Interior Exploration using Seismic Investigations, Geodesy and Heat Transport.

"Think of InSight as Mars' first health checkup in more than 4.5 billion years," said Bruce Banerdt of JPL, the mission's principal investigator. "We'll study its pulse by 'listening' for marsquakes with a seismometer. We'll take its temperature with a heat probe. And we'll check its reflexes with a radio experiment."

Above: Technicians at Lockheed Martin Space in Littleton, Colorado installed a microchip with 1.6 million names submitted by the public to ride along with NASA's InSight mission to Mars. (Lockheed Martin Space)

In addition to the solar panel test, engineers added a final touch: a microchip inscribed with more than 1.6 million names submitted by the public. It joins a chip containing almost 827,000 names that was glued to the top of InSight back in 2015, adding up to a total of about 2.4 million names going to Mars. "It's a fun way for the public to feel personally invested in the mission," Banerdt said. "We're happy to have them along for the ride."

The chips were inscribed at JPL's Microdevices Laboratory, which has added names and images to a number of spacecraft, including the Mars Spirit, Opportunity and Curiosity rovers. Each character on the InSight microchips is just 400 nanometers wide. Compare that to a human hair, 100,000 nanometers wide, or a red blood cell, 8,000 nanometers wide.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 03-01-2018 08:07 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA InSight Mission to Mars Arrives at Launch Site

NASA's InSight spacecraft has arrived at Vandenberg Air Force Base in central California to begin final preparations for a launch this May. The spacecraft was shipped from Lockheed Martin Space, Denver, today and arrived at Vandenberg at 3:49 p.m. PST (6:49 p.m. EST). The launch period for InSight opens May 5 and continues through June 8. InSight will be the first mission to look deep beneath the Martian surface, studying the planet's interior by listening for marsquakes and measuring the planet's heat output. It will also be the first planetary spacecraft to launch from the West Coast.

Above: Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. (NASA/JPL-Caltech/Lockheed Martin Space)

"The Air Force C-17 crew from the 21st Airlift Squadron gave us a great ride," said Tom Hoffman, InSight project manager, from NASA's Jet Propulsion Laboratory in Pasadena, California. "Next time InSight travels as high and as fast, it will be about 23 seconds into its launch, on the way to Mars."

At the Astrotech payload processing facility at Vandenberg, InSight will soon be removed from its shipping container -- the first of several remaining milestones to prepare it for launch. Later next week, the spacecraft will begin functional testing to verify its state of health after the flight from Colorado. After that, the team will load updated flight software and perform a series of mission readiness tests. These tests involve the entire spacecraft flight system, the associated science instruments and the ground data system.

"One of the most important activities before launch is to load the spacecraft with the fuel needed for the journey to Mars," said Hoffman. "After fuel loading, the spacecraft will undergo a spin-balance test to determine precisely the center of mass. This knowledge is needed to be sure the entry and descent into the Mars atmosphere goes as planned."

InSight will be carried into space aboard a United Launch Alliance Atlas V-401 rocket lifting off from Space Launch Complex 3E at Vandenberg Air Force Base. For a May 5 liftoff, the launch window opens at 4:05 a.m. PDT (7:05 a.m. EDT) and remains open through 6:05 a.m. PDT (9:05 a.m. EDT).

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 03-30-2018 10:53 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA Ready to Study Heart of Mars

NASA is about to go on a journey to study the interior of Mars. The space agency held a news conference today (March 29) at its Jet Propulsion Laboratory (JPL) in Pasadena, California, detailing the next mission to the Red Planet.

Scheduled to launch as early as May 5, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight), a stationary lander, will be the first-ever mission dedicated to exploring Mars' deep interior. It also will be the first NASA mission since the Apollo moon landings to place a seismometer, a device that measures quakes, on the soil of another planet.

For JPL's Bruce Banerdt, principal investigator for InSight, it's also a labor of love. Banerdt has worked more than 25 years to make the mission a reality.

"In some ways, InSight is like a scientific time machine that will bring back information about the earliest stages of Mars' formation 4.5 billion years ago," Banerdt said. "It will help us learn how rocky bodies form, including Earth, its moon, and even planets in other solar systems."

InSight carries a suite of sensitive instruments to gather data and, unlike a rover mission, these instruments require a stationary lander from which they can carefully be placed on and below the Martian surface.

In a sense, Mars is the exoplanet next door – a nearby example of how gas, dust and heat combine and arrange themselves into a planet. Looking deep into Mars will let scientists understand how different its crust, mantle and core are from Earth.

NASA isn't the only agency excited about the mission. Several European partners contributed instruments or instrument components to the InSight mission. France's Centre National d'Études Spatiales led a multinational team that built an ultra-sensitive seismometer for detecting marsquakes. The German Aerospace Center (DLR) developed a thermal probe that can bury itself up to 16 feet (5 meters) underground and measure heat flowing from inside the planet.

"InSight is a truly international space mission," said Tom Hoffman, project manager at JPL. "Our partners have delivered incredibly capable instruments that will make it possible to gather unique science after we land."

InSight currently is at Vandenberg Air Force Base in California undergoing final preparation before launch. On Wednesday, it completed what's known as a spin test: the entire spacecraft is rotated at high speeds to confirm its center of gravity.

That's critical for its entry, descent and landing on Mars in November, Hoffman said. In the next month, the spacecraft will be mounted to its rocket, connections between them will be checked, and the launch team will go through a final training.

"This next month will be exciting," Banerdt said. "We've got some final work to do, but we're almost ready to go to Mars."

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 05-03-2018 02:00 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
collectSPACE
West to Mars: NASA's InSight Mars lander to make historic west coast launch

In its 60 year history, NASA has launched more than 50 spacecraft to study the solar system beyond Earth and its moon. Despite the long record, the agency's next mission will do something no other U.S. interplanetary probe has done before.

Go west.

Assuming all goes as planned, NASA's InSight lander will be the first mission to study the deep interior of Mars. But eight months before it touches down and begins probing the Red Planet, it will make history becoming NASA's first interplanetary mission to launch from the west coast of the United States.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 05-04-2018 08:30 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's First Mission to Study the Interior of Mars Awaits May 5 Launch

All systems are go for NASA's next launch to the Red Planet.

The early-morning liftoff on Saturday of the Mars InSight lander will mark the first time in history an interplanetary launch will originate from the West Coast. InSight will launch from the U.S. Air Force Vandenberg Air Force Base Space Launch Complex 3E. The two-hour launch window will open on May 5 at 4:05 a.m. PDT (7:05 a.m. EDT).

InSight, for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, will launch aboard aUnited Launch Alliance (ULA) Atlas V rocket. InSight will study the deep interior of Mars to learn how all rocky planets formed, including Earth and its Moon. The lander's instruments include a seismometer to detect marsquakes, and a probe that will monitor the flow of heat from the planet's interior.

The ULA rocket will carry the spacecraft over the Channel Islands just off the California Coast and continue climbing out over the Pacific, shadowing the coastline south beyond Baja California. InSight's Atlas will reach orbit about 13 minutes after launch, when the rocket is about 1,200 miles (1,900 kilometers) northwest of Isabella Island, Ecuador.

"For those Southern Californians who are interested in rockets or space exploration, or have insomnia, we hope to put on a great show this Saturday," said Tom Hoffman, InSight project manager from NASA's Jet Propulsion Laboratory in Pasadena, California. "But for those who want to sleep in on Saturday, there will be another opportunity to engage with this historic mission. We will be landing on Mars in the western Elysium Planitia region on Monday, Nov. 26, around noon Pacific time. You will be able to watch a live stream of this landing while working on your holiday shopping."

Getting a Mars mission flying requires a great many milestones. Among those still to come are the official start of the countdown to launch -- which comes on Friday, May 4 at 10:14 a.m. PDT (Saturday, May 5, 1:14 a.m. EDT). A little over an hour later, at about 11:30 p.m. PDT (May 5, 2:30 a.m. EDT), the 260-foot-tall (80-meter) Mobile Service Tower -- a structure that has been protecting the Atlas V launch vehicle and its InSight payload during their vertical assembly -- will begin a 20-minute long, 250-foot (about 80-meter) roll away from the Atlas. Four hours and 25 minutes later, the launch window will open.

"I've been to several rocket launches, but it is a whole different vibe when there is something you've been working on for years sitting in the nose cone waiting to get hurled beyond our atmosphere," said Bruce Banerdt, InSight principal investigator at JPL. "But as exciting as launch day will be, it's just a first step in a journey that should tell us not only why Mars formed the way it did, but how planets take shape in general."

InSight's launch period is May 5 through June 8, 2018, with multiple launch opportunities over windows of approximately two hours each date. Launch opportunities are set five minutes apart during each date's window.Whichever date the launch occurs, InSight's landing on Mars is planned for Nov. 26, 2018, around noon PST (3 p.m. EST).

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 05-05-2018 07:50 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
collectSPACE
NASA's InSight lander launches to Mars to study deep interior of planet

The first spacecraft dedicated to studying the deep interior of Mars is now bound for the Red Planet.

NASA's InSight Mars lander, which will try to detect marsquakes and monitor the flow of heat below the Martian surface for the first time, lifted off on Saturday (May 5) from Space Launch Complex-3 at Vandenberg Air Force Base in California. The 4:05 a.m. PDT (7:05 a.m. EDT or 1105 GMT) liftoff made history as the first launch of a NASA interplanetary mission from the U.S. west coast.

Not that spectators in the immediate vicinity could catch sight of that history being made...

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 05-23-2018 09:25 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
InSight Steers Toward Mars

NASA's InSight lander has made its first course correction toward Mars.

InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to exploring the deep interior of Mars.

The lander is currently encapsulated in a protective aeroshell, which launched on top of an Atlas V 401 rocket on May 5 from Vandenberg Air Force Base in Central California. Yesterday, the spacecraft fired its thrusters for the first time to change its flight path. This activity, called a trajectory correction maneuver, will happen a maximum of six times to guide the lander to Mars.

Every launch starts with a rocket. That's necessary to get a spacecraft out past Earth's gravity -- but rockets don't complete the journey to other planets. Before launch, every piece of hardware headed to Mars is cleaned, limiting the number of Earth microbes that might travel on the spacecraft. However, the rocket and its upper stage, called a Centaur, don't get the same special treatment.

As a result, Mars launches involve aiming the rocket just off-target so that it flies off into space. Separately, the spacecraft performs a series of trajectory correction maneuvers guiding it to the Red Planet. This makes sure that only the clean spacecraft lands on the planet, while the upper stage does not come close.

Precise calculations are required for InSight to arrive at exactly the right spot in Mars' atmosphere at exactly the right time, resulting in a landing on Nov. 26. Every step of the way, a team of navigators estimates the position and velocity of the spacecraft. Then they design maneuvers to deliver it to an entry point at Mars. That navigation team is based at NASA's Jet Propulsion Laboratory in Pasadena, California, which leads the InSight mission.

"This first maneuver is the largest we'll conduct," said Fernando Abilleira of JPL, InSight's Deputy Mission Design and Navigation Manager. "The thrusters will fire for about 40 seconds to impart a velocity change of 3.8 meters per second [8.5 mph] to the spacecraft. That will put us in the right ballpark as we aim for Mars."

Especially at the beginning of that cruise, navigators rely on NASA's Deep Space Network (DSN) to track the spacecraft. The DSN is a system of antennas located at three sites around the Earth. As the planet rotates, each of these sites comes into range of NASA's spacecraft, pinging them with radio signals to track their positions. The antennas also send and receive data this way.

The DSN can give very accurate measurements about spacecraft position and velocity. But predicting where InSight will be after it fires its thrusters requires lots of modeling, Abilleira said. As the cruise to Mars progresses, navigators have more information about the forces acting on a spacecraft. That lets them further refine their models. Combined with DSN tracking measurements, these models allow them to precisely drive the spacecraft to the desired entry point.

"Navigation is all about statistics, probability and uncertainty," Abilleira said. "As we gather more information on the forces acting on the spacecraft, we can better predict how it's moving and how future maneuvers will affect its path."

Yesterday's 40-second burn relies on four of eight thrusters on the spacecraft. A separate group of four is autonomously fired on a daily basis to keep the spacecraft's solar panels trained on the Sun and its antennas pointed at Earth. While necessary to maintain orientation, these small, daily firings also introduce errors that navigators have to account for and counterbalance.

"Everyone has been working hard since launch to assess what these small forces have done to the trajectory," said Allen Halsell of JPL, InSight's navigation team chief. "People have worked lots of hours to look at that. For engineers, it's a very interesting problem, and fun to try to figure out."

When the spacecraft is just a few hours from Mars, the planet's gravitational pull, or gravity well, will begin to reel the spacecraft in. At that point, InSight's team will prepare for the next milestone after cruise: entering Mars' atmosphere, descending to the surface and sticking InSight's landing.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 08-20-2018 05:15 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's InSight Passes Halfway to Mars, Instruments Check In

NASA's InSight spacecraft, en route to a Nov. 26 landing on Mars, passed the halfway mark on Aug. 6. All of its instruments have been tested and are working well.

As of Aug. 20, the spacecraft had covered 172 million miles (277 million kilometers) since its launch 107 days ago. In another 98 days, it will travel another 129 million miles (208 million kilometers) and touch down in Mars' Elysium Planitia region, where it will be the first mission to study the Red Planet's deep interior. InSight stands for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport.

The InSight team is using the time before the spacecraft's arrival at Mars to not only plan and practice for that critical day, but also to activate and check spacecraft subsystems vital to cruise, landing and surface operations, including the highly sensitive science instruments.

InSight's seismometer, which will be used to detect quakes on Mars, received a clean bill of health on July 19. The SEIS instrument (Seismic Experiment for Interior Structure) is a six-sensor seismometer combining two types of sensors to measure ground motions over a wide range of frequencies. It will give scientists a window into Mars' internal activity.

"We did our final performance checks on July 19, which were successful," said Bruce Banerdt, principal investigator of InSight from NASA's Jet Propulsion Laboratory, Pasadena, California.

The team also checked an instrument that will measure the amount of heat escaping from Mars. After being placed on the surface, InSight's Heat Flow and Physical Properties Package (HP3) instrument will use a self-hammering mechanical mole burrowing to a depth of 10 to 16 feet (3 to 5 meters). Measurements by sensors on the mole and on a science tether from the mole to the surface will yield the first precise determination of the amount of heat escaping from the planet's interior. The checkout consisted of powering on the main electronics for the instrument, performing checks of its instrument sensor elements, exercising some of the instrument's internal heaters, and reading out the stored settings in the electronics module.

The third of InSight's three main investigations — Rotation and Interior Structure Experiment (RISE) — uses the spacecraft's radio connection with Earth to assess perturbations of Mars' rotation axis. These measurements can provide information about the planet's core.

"We have been using the spacecraft's radio since launch day, and our conversations with InSight have been very cordial, so we are good to go with RISE as well," said Banerdt.

The lander's cameras checked out fine as well, taking a spacecraft selfie of the inside of the spacecraft's backshell. InSight Project Manager Tom Hoffman from JPL said that, "If you are an engineer on InSight, that first glimpse of the heat shield blanket, harness tie-downs and cover bolts is avery reassuring sight as it tells us our Instrument Context Camera is operating perfectly. The next picture we plan to take with this camera will be of the surface of Mars."

If all goes as planned, the camera will take the first image of Elysium Planitia minutes after InSight touches down on Mars.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 10-22-2018 04:23 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's First Image of Mars from a CubeSat

NASA's MarCO mission was designed to find out if briefcase-sized spacecraft called CubeSats could survive the journey to deep space. Now, MarCO — which stands for Mars Cube One — has Mars in sight.

Above: One of NASA's twin MarCO spacecraft took this image of Mars on October 2 — the first time a CubeSat, a kind of low-cost, briefcase-sized spacecraft — has done so.

One of the twin MarCO CubeSats snapped this image of Mars on Oct. 3 - the first image of the Red Planet ever produced by this class of tiny, low-cost spacecraft. The two CubeSats are officially called MarCO-A and MarCO-B but nicknamed "EVE" and "Wall-E" by their engineering team.

A wide-angle camera on top of MarCO-B produced the image as a test of exposure settings. The MarCO mission, led by NASA's Jet Propulsion Laboratory in Pasadena, California, hopes to produce more images as the CubeSats approach Mars ahead of Nov. 26. That's when they'll demonstrate their communications capabilities while NASA's InSight spacecraft attempts to land on the Red Planet. (The InSight mission won't rely on them, however; NASA's Mars orbiters will be relaying the spacecraft's data back to Earth.)

This image was taken from a distance of roughly 8 million miles (12.8 million kilometers) from Mars. The MarCOs are "chasing" Mars, which is a moving target as it orbits the Sun. In order to be in place for InSight's landing, the CubeSats have to travel roughly 53 million miles (85 million kilometers). They have already traveled 248 million miles (399 million kilometers).

MarCO-B's wide-angle camera looks straight out from the deck of the CubeSat. Parts related to the spacecraft's high-gain antenna are visible on either side of the image. Mars appears as a small red dot at the right of the image.

To take the image, the MarCO team had to program the CubeSat to rotate in space so that the deck of its boxy "body" was pointing at Mars. After several test images, they were excited to see that clear, red pinprick.

"We've been waiting six months to get to Mars," said Cody Colley, MarCO's mission manager at JPL. "The cruise phase of the mission is always difficult, so you take all the small wins when they come. Finally seeing the planet is definitely a big win for the team."

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 11-26-2018 02:04 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
collectSPACE
NASA's InSight survives landing on Mars to probe planet's interior

A new spacecraft has successfully landed on the surface of Mars for only the eighth time in history.

NASA's InSight lander touched down Monday (Nov. 26) at 11:44 a.m. PST (1944 GMT) after a nearly seven-month journey from Earth. Due to the time it takes light to travel between the two planets, it was about 8 minutes later when the mission team at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California erupted in applause.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 11-26-2018 06:30 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
collectSPACE
NASA's InSight lands on Mars with braille 'easter egg' hidden in sight

NASA's InSight, newly arrived on the surface of Mars, will study what cannot be seen — and includes a nod to those without sight.

"I was thinking what else could we put on there that could be a kind of code that people in the know could look at and figure out?" said Bruce Banerdt, InSight's principal investigator at JPL, in an interview with collectSPACE. "I thought, 'What about braille?'"

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 11-26-2018 09:10 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
InSight Is Catching Rays on Mars

NASA's InSight has sent signals to Earth indicating that its solar panels are open and collecting sunlight on the Martian surface. NASA's Mars Odyssey orbiter relayed the signals, which were received on Earth at about 5:30 p.m. PST (8:30 p.m. EST). Solar array deployment ensures the spacecraft can recharge its batteries each day. Odyssey also relayed a pair of images showing InSight's landing site.

Above: The Instrument Deployment Camera (IDC), located on the robotic arm of NASA's InSight lander, took this picture off the Martian surface on Nov. 26, 2018, the same day the spacecraft touched down on the Red Planet. The camera's transparent dust cover is still on in this image, to prevent particulates kicked up during landing from settling on the camera's lens. This image was relayed from InSight to Earth via NASA's Odyssey spacecraft, currently orbiting Mars. (NASA/JPL-Caltech)

"The InSight team can rest a little easier tonight now that we know the spacecraft solar arrays are deployed and recharging the batteries," said Tom Hoffman, InSight's project manager at NASA's Jet Propulsion Laboratory in Pasadena, California, which leads the mission. "It's been a long day for the team. But tomorrow begins an exciting new chapter for InSight: surface operations and the beginning of the instrument deployment phase."

InSight's twin solar arrays are each 7 feet (2.2 meters) wide; when they're open, the entire lander is about the size of a big 1960s convertible. Mars has weaker sunlight than Earth because it's much farther away from the Sun. But the lander doesn't need much to operate: The panels provide 600 to 700 watts on a clear day, enough to power a household blender and plenty to keep its instruments conducting science on the Red Planet. Even when dust covers the panels — what is likely to be a common occurrence on Mars — they should be able to provide at least 200 to 300 watts.

The panels are modeled on those used with NASA's Phoenix Mars Lander, though InSight's are slightly larger in order to provide more power output and to increase their structural strength. These changes were necessary to support operations for one full Mars year (two Earth years).

In the coming days, the mission team will unstow InSight's robotic arm and use the attached camera to snap photos of the ground so that engineers can decide where to place the spacecraft's scientific instruments. It will take two to three months before those instruments are fully deployed and sending back data.

In the meantime, InSight will use its weather sensors and magnetometer to take readings from its landing site at Elysium Planitia — its new home on Mars.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 11-30-2018 07:15 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Mars New Home 'a Large Sandbox

With InSight safely on the surface of Mars, the mission team at NASA's Jet Propulsion Laboratory in Pasadena, California, is busy learning more about the spacecraft's landing site. They knew when InSight landed on Nov. 26 that the spacecraft had touched down on target, a lava plain named Elysium Planitia. Now they've determined that the vehicle sits slightly tilted (about 4 degrees) in a shallow dust- and sand-filled impact crater known as a "hollow." InSight has been engineered to operate on a surface with an inclination up to 15 degrees.

"The science team had been hoping to land in a sandy area with few rocks since we chose the landing site, so we couldn't be happier," said InSight project manager Tom Hoffman of JPL. "There are no landing pads or runways on Mars, so coming down in an area that is basically a large sandbox without any large rocks should make instrument deployment easier and provide a great place for our mole to start burrowing."

Rockiness and slope grade factor into landing safety and are also important in determining whether InSight can succeed in its mission after landing. Rocks and slopes could affect InSight's ability to place its heat-flow probe - also known as "the mole," or HP3 - and ultra-sensitive seismometer, known as SEIS, on the surface of Mars.

Touching down on an overly steep slope in the wrong direction could also have jeopardized the spacecraft's ability to get adequate power output from its two solar arrays, while landing beside a large rock could have prevented InSight from being able to open one of those arrays. In fact, both arrays fully deployed shortly after landing.

The InSight science team's preliminary assessment of the photographs taken so far of the landing area suggests the area in the immediate vicinity of the lander is populated by only a few rocks. Higher-resolution images are expected to begin arriving over the coming days, after InSight releases the clear-plastic dust covers that kept the optics of the spacecraft's two cameras safe during landing.

"We are looking forward to higher-definition pictures to confirm this preliminary assessment," said JPL's Bruce Banerdt, principal investigator of InSight. "If these few images - with resolution-reducing dust covers on - are accurate, it bodes well for both instrument deployment and the mole penetration of our subsurface heat-flow experiment."

Once sites on the Martian surface have been carefully selected for the two main instruments, the team will unstow and begin initial testing of the mechanical arm that will place them there. The image above shows the grapple at the end of the arm shifting slightly, as expected, after being unlatched.

Data downlinked from the lander also indicate that during its first full day on Mars, the solar-powered InSight spacecraft generated more electrical power than any previous vehicle on the surface of Mars.

"It is great to get our first 'off-world record' on our very first full day on Mars," said Hoffman. "But even better than the achievement of generating more electricity than any mission before us is what it represents for performing our upcoming engineering tasks. The 4,588 watt-hours we produced during sol 1 means we currently have more than enough juice to perform these tasks and move forward with our science mission."

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 12-06-2018 01:27 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's Mars InSight Flexes Its Arm

New images from NASA's Mars InSight lander show its robotic arm is ready to do some lifting.

Above: This image from InSight's robotic-arm mounted Instrument Deployment Camera shows the instruments on the spacecraft's deck, with the Martian surface of Elysium Planitia in the background. The image was received on Dec. 4, 2018 (Sol 8). (NASA/NASA/JPL-Caltech)

With a reach of nearly 6 feet (2 meters), the arm will be used to pick up science instruments from the lander's deck, gently setting them on the Martian surface at Elysium Planitia, the lava plain where InSight touched down on Nov. 26.

But first, the arm will use its Instrument Deployment Camera, located on its elbow, to take photos of the terrain in front of the lander. These images will help mission team members determine where to set InSight's seismometer and heat flow probe - the only instruments ever to be robotically placed on the surface of another planet.

"Today we can see the first glimpses of our workspace," said Bruce Banerdt, the mission's principal investigator at NASA's Jet Propulsion Laboratory in Pasadena, California. "By early next week, we'll be imaging it in finer detail and creating a full mosaic."

Above: An image of InSight's robotic arm, with its scoop and stowed grapple, poised above the Martian soil. The image was received on Dec. 4, 2018 (Sol 8). (NASA/NASA/JPL-Caltech)

Another camera, called the Instrument Context Camera, is located under the lander's deck. It will also offer views of the workspace, though the view won't be as pretty.

"We had a protective cover on the Instrument Context Camera, but somehow dust still managed to get onto the lens," said Tom Hoffman of JPL, InSight's project manager. "While this is unfortunate, it will not affect the role of the camera, which is to take images of the area in front of the lander where our instruments will eventually be placed."

Placement is critical, and the team is proceeding with caution. Two to three months could go by before the instruments have been situated and calibrated.

Over the past week and a half, mission engineers have been testing those instruments and spacecraft systems, ensuring they're in working order. A couple instruments are even recording data: a drop in air pressure, possibly caused by a passing dust devil, was detected by the pressure sensor. This, along with a magnetometer and a set of wind and temperature sensors, are part of a package called the Auxiliary Payload Sensor Subsystem, which will collect meteorological data.

Above: A partial view of the deck of NASA's InSight lander, where it stands on the Martian plains Elysium Planitia. The image was received on Dec. 4, 2018 (Sol 8). (NASA/NASA/JPL-Caltech)

More images from InSight's arm were scheduled to come down this past weekend. However, imaging was momentarily interrupted, resuming the following day. During the first few weeks in its new home, InSight has been instructed to be extra careful, so anything unexpected will trigger what's called a fault. Considered routine, it causes the spacecraft to stop what it is doing and ask for help from operators on the ground.

"We did extensive testing on Earth. But we know that everything is a little different for the lander on Mars, so faults are not unusual," Hoffman said. "They can delay operations, but we're not in a rush. We want to be sure that each operation that we perform on Mars is safe, so we set our safety monitors to be fairly sensitive initially."

Spacecraft engineers had already factored extra time into their estimates for instrument deployment to account for likely delays caused by faults. The mission's primary mission is scheduled for two Earth years, or one Mars year - plenty of time to gather data from the Red Planet's surface.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 12-07-2018 05:29 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA InSight Lander 'Hears' Martian Winds

NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport InSight lander, which touched down on Mars just 10 days ago, has provided the first ever "sounds" of Martian winds on the Red Planet. A media teleconference about these sounds will be held today at 12:30 p.m. EST (9:30 a.m. PST).

Above: One of InSight's 7-foot (2.2 meter) wide solar panels was imaged by the lander's Instrument Deployment Camera, which is fixed to the elbow of its robotic arm. (NASA/JPL-Caltech)

"Capturing this audio was an unplanned treat," said Bruce Banerdt, InSight principal investigator at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. "But one of the things our mission is dedicated to is measuring motion on Mars, and naturally that includes motion caused by sound waves."

Two very sensitive sensors on the spacecraft detected these wind vibrations: an air pressure sensor inside the lander and a seismometer sitting on the lander's deck, awaiting deployment by InSight's robotic arm. The two instruments recorded the wind noise in different ways. The air pressure sensor, part of the Auxiliary Payload Sensor Subsystem (APSS), which will collect meteorological data, recorded these air vibrations directly. The seismometer recorded lander vibrations caused by the wind moving over the spacecraft's solar panels, which are each 7 feet (2.2 meters) in diameter and stick out from the sides of the lander like a giant pair of ears.

This is the only phase of the mission during which the seismometer, called the Seismic Experiment for Interior Structure SEIS, will be capable of detecting vibrations generated directly by the lander. In a few weeks, it will be placed on the Martian surface by InSight's robotic arm, then covered by a domed shield to protect it from wind and temperature changes. It still will detect the lander's movement, though channeled through the Martian surface. For now, it's recording vibrational data that scientists later will be able to use to cancel out noise from the lander when SEIS is on the surface, allowing them to detect better actual marsquakes.

When earthquakes occur on Earth, their vibrations, which bounce around inside our planet, make it "ring" similar to how a bell creates sound. InSight will see if tremors, or marsquakes, have a similar effect on Mars. SEIS will detect these vibrations that will tell us about the Red Planet's deep interior. Scientists hope this will lead to new information on the formation of the planets in our solar system, perhaps even of our own planet.

SEIS, France's Centre National d'Études Spatiales (CNES), includes two sets of seismometers. Those contributed by the French will be used once SEIS is deployed from the deck of the lander. But SEIS also includes short period (SP) silicon sensors developed by Imperial College London with electronics from Oxford University in the United Kingdom. These sensors can work while on the deck of the lander and are capable of detecting vibrations up to frequencies of nearly 50 hertz, at the lower range of human hearing.

"The InSight lander acts like a giant ear," said Tom Pike, InSight science team member and sensor designer at Imperial College London. "The solar panels on the lander's sides respond to pressure fluctuations of the wind. It's like InSight is cupping its ears and hearing the Mars wind beating on it. When we looked at the direction of the lander vibrations coming from the solar panels, it matches the expected wind direction at our landing site."

Pike compared the effect to a flag in the wind. As a flag breaks up the wind, it creates oscillations in air pressure that the human ear perceives as flapping. Separately, APSS records changes in pressure directly from the thin Martian air.

"That's literally what sound is - changes in air pressure," said Don Banfield InSight's science lead for APSS from Cornell University in Ithaca, New York. "You hear that whenever you speak to someone across the room."

Unlike the vibrations recorded by the short period sensors, audio from APSS is about 10 hertz, below the range of human hearing.

The raw audio sample from the seismometer was released unaltered; a second version was raised two octaves to be more perceptible to the human ear - especially when heard through laptop or mobile speakers. The second audio sample from APSS was sped up by a factor of 100, which shifted it up in frequency.

An even clearer sound from Mars is yet to come. In just a couple years, NASA's Mars 2020 rover is scheduled to land with two microphones on board. The first, provided by JPL, is included specifically to record, for the first time, the sound of a Mars landing. The second is part of the SuperCam and will be able to detect the sound of the instrument's laser as it zaps different materials. This will help identify these materials based on the change in sound frequency.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 12-20-2018 11:24 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's InSight Places First Instrument on Mars

NASA's InSight lander has deployed its first instrument onto the surface of Mars, completing a major mission milestone. New images from the lander show the seismometer on the ground, its copper-colored covering faintly illuminated in the Martian dusk. It looks as if all is calm and all is bright for InSight, heading into the end of the year.

Above: NASA's InSight lander placed its seismometer on Mars on Dec. 19, 2018. This was the first time a seismometer had ever been placed onto the surface of another planet. (NASA/JPL-Caltech)

"InSight's timetable of activities on Mars has gone better than we hoped," said InSight Project Manager Tom Hoffman, who is based at NASA's Jet Propulsion Laboratory in Pasadena, California. "Getting the seismometer safely on the ground is an awesome Christmas present."

The InSight team has been working carefully toward deploying its two dedicated science instruments onto Martian soil since landing on Mars on Nov. 26. Meanwhile, the Rotation and Interior Structure Experiment (RISE), which does not have its own separate instrument, has already begun using InSight's radio connection with Earth to collect preliminary data on the planet's core. Not enough time has elapsed for scientists to deduce what they want to know - scientists estimate they might have some results starting in about a year.

To deploy the seismometer (also known as the Seismic Experiment for Interior Structure, or SEIS) and the heat probe (also known as the Heat Flow and Physical Properties Probe, or HP3), engineers first had to verify the robotic arm that picks up and places InSight's instruments onto the Martian surface was working properly. Engineers tested the commands for the lander, making sure a model in the test bed at JPL deployed the instruments exactly as intended. Scientists also had to analyze images of the Martian terrain around the lander to figure out the best places to deploy the instruments.

On Tuesday, Dec. 18, InSight engineers sent up the commands to the spacecraft. On Wednesday, Dec. 19, the seismometer was gently placed onto the ground directly in front of the lander, about as far away as the arm can reach - 5.367 feet, or 1.636 meters, away).

"Seismometer deployment is as important as landing InSight on Mars," said InSight Principal Investigator Bruce Banerdt, also based at JPL. "The seismometer is the highest-priority instrument on InSight: We need it in order to complete about three-quarters of our science objectives."

The seismometer allows scientists to peer into the Martian interior by studying ground motion - also known as marsquakes. Each marsquake acts as a kind of flashbulb that illuminates the structure of the planet's interior. By analyzing how seismic waves pass through the layers of the planet, scientists can deduce the depth and composition of these layers.

"Having the seismometer on the ground is like holding a phone up to your ear," said Philippe Lognonné, principal investigator of SEIS from Institut de Physique du Globe de Paris (IPGP) and Paris Diderot University. "We're thrilled that we're now in the best position to listen to all the seismic waves from below Mars' surface and from its deep interior."

In the coming days, the InSight team will work on leveling the seismometer, which is sitting on ground that is tilted 2 to 3 degrees. The first seismometer science data should begin to flow back to Earth after the seismometer is in the right position.

But engineers and scientists at JPL, the French national space agency Centre National d'Études Spatiales (CNES) and other institutions affiliated with the SEIS team will need several additional weeks to make sure the returned data are as clear as possible. For one thing, they will check and possibly adjust the seismometer's long, wire-lined tether to minimize noise that could travel along it to the seismometer. Then, in early January, engineers expect to command the robotic arm to place the Wind and Thermal Shield over the seismometer to stabilize the environment around the sensors.

Assuming that there are no unexpected issues, the InSight team plans to deploy the heat probe onto the Martian surface by late January. HP3 will be on the east side of the lander's work space, roughly the same distance away from the lander as the seismometer.

For now, though, the team is focusing on getting those first bits of seismic data (however noisy) back from the Martian surface.

"We look forward to popping some Champagne when we start to get data from InSight's seismometer on the ground," Banerdt added. "I have a bottle ready for the occasion."

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 02-04-2019 01:46 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
InSight's Seismometer Now Has a Cozy Shelter on Mars

For the past several weeks, NASA's InSight lander has been making adjustments to the seismometer it set on the Martian surface on Dec. 19. Now it's reached another milestone by placing a domed shield over the seismometer to help the instrument collect accurate data. The seismometer will give scientists their first look at the deep interior of the Red Planet, helping them understand how it and other rocky planets are formed.

Above: NASA's InSight lander deployed its Wind and Thermal Shield on Feb. 2 (Sol 66). The shield covers InSight's seismometer, which was set down onto the Martian surface on Dec. 19. (NASA/JPL-Caltech)

The Wind and Thermal Shield helps protect the supersensitive instrument from being shaken by passing winds, which can add "noise" to its data. The dome's aerodynamic shape causes the wind to press it toward the planet's surface, ensuring it won't flip over. A skirt made of chain mail and thermal blankets rings the bottom, allowing it to settle easily over any rocks, though there are few at InSight's location.

An even bigger concern for InSight's seismometer - called the Seismic Experiment for Interior Structure (SEIS) - is temperature change, which can expand and contract metal springs and other parts inside the seismometer. Where InSight landed, temperatures fluctuate by about 170 degrees Fahrenheit (94 degrees Celsius) over the course of a Martian day, or sol.

"Temperature is one of our biggest bugaboos," said InSight Principal Investigator Bruce Banerdt of NASA's Jet Propulsion Laboratory in Pasadena, California. JPL leads the InSight mission and built the Wind and Thermal Shield. "Think of the shield as putting a cozy over your food on a table. It keeps SEIS from warming up too much during the day or cooling off too much at night. In general, we want to keep the temperature as steady as possible."

On Earth, seismometers are often buried about four feet (1.2 meters) underground in vaults, which helps keep the temperature stable. InSight can't build a vault on Mars, so the mission relies on several measures to protect its seismometer. The shield is the first line of defense.

A second line of defense is SEIS itself, which is specially engineered to correct for wild temperature swings on the Martian surface. The seismometer was built so that as some parts expand and contract, others do so in the opposite direction to partially cancel those effects. Additionally, the instrument is vacuum-sealed in a titanium sphere that insulates its sensitive insides and reduces the influence of temperature.

But even that isn't quite enough. The sphere is enclosed within yet another insulating container - a copper-colored hexagonal box visible during SEIS's deployment. The walls of this box are honeycombed with cells that trap air and keep it from moving. Mars provides an excellent gas for this insulation: Its thin atmosphere is primarily composed of carbon dioxide, which at low pressure is especially slow to conduct heat.

With these three insulating barriers, SEIS is well-protected from thermal "noise" seeping into the data and masking the seismic waves that InSight's team wants to study. Finally, most additional interference from the Martian environment can be detected by InSight's weather sensors, then filtered out by mission scientists.

With the seismometer on the ground and covered, InSight's team is readying for its next step: deploying the heat flow probe, called the Heat Flow and Physical Properties Package (HP3), onto the Martian surface. That's expected to happen next week.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 02-13-2019 10:30 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's InSight Prepares to Take Mars' Temperature

NASA's InSight lander has placed its second instrument on the Martian surface. New images confirm that the Heat Flow and Physical Properties Package, or HP3, was successfully deployed on Feb. 12 about 3 feet (1 meter) from InSight's seismometer, which the lander recently covered with a protective shield. HP3 measures heat moving through Mars' subsurface and can help scientists figure out how much energy it takes to build a rocky world.

Above: NASA's InSight lander set its heat probe, called the Heat and Physical Properties Package (HP3), on the Martian surface on Feb. 12. (NASA/JPL-Caltech/DLR)

Equipped with a self-hammering spike, mole, the instrument will burrow up to 16 feet (5 meters) below the surface, deeper than any previous mission to the Red Planet. For comparison, NASA's Viking 1 lander scooped 8.6 inches (22 centimeters) down. The agency's Phoenix lander, a cousin of InSight, scooped 7 inches (18 centimeters) down.

"We're looking forward to breaking some records on Mars," said HP3 Principal Investigator Tilman Spohn of the German Aerospace Center (DLR), which provided the heat probe for the InSight mission. "Within a few days, we'll finally break ground using a part of our instrument we call the mole."

HP3 looks a bit like an automobile jack but with a vertical metal tube up front to hold the 16-inch-long (40-centimeter-long) mole. A tether connects HP3's support structure to the lander, while a tether attached to the top of the mole features heat sensors to measure the temperature of the Martian subsurface. Meanwhile, heat sensors in the mole itself will measure the soil's thermal conductivity - how easily heat moves through the subsurface.

"Our probe is designed to measure heat coming from the inside of Mars," said InSight Deputy Principal Investigator Sue Smrekar of NASA's Jet Propulsion Laboratory in Pasadena, California. "That's why we want to get it belowground. Temperature changes on the surface, both from the seasons and the day-night cycle, could add 'noise' to our data."

The mole stops about every 20 inches (51 centimeters) to warm up for roughly four days; the sensors check how rapidly this happens, which tells scientists the conductivity of the soil. Between the careful burrowing action, the pauses and the time required for the science team to send commands to the instrument, more than a month will go by before the mole reaches its maximum depth. If the mole extends as far as it can go, the team will need only a few months of data to figure out Mars' internal temperature.

If the mole encounters a large rock before reaching at least 10 feet (3 meters) down, the team will need a full Martian year (two Earth years) to filter noise out of their data. This is one reason the team carefully selected a landing site with few rocks and why it spent weeks choosing where to place the instrument.

"We picked the ideal landing site, with almost no rocks at the surface," said JPL's Troy Hudson, a scientist and engineer who helped design HP3. "That gives us reason to believe there aren't many large rocks in the subsurface. But we have to wait and see what we'll encounter underground."

However deep it gets, there's no debating that the mole is a feat of engineering.

"That thing weighs less than a pair of shoes, uses less power than a Wi-Fi router and has to dig at least 10 feet [3 meters] on another planet," Hudson said. "It took so much work to get a version that could make tens of thousands of hammer strokes without tearing itself apart; some early versions failed before making it to 16 feet [5 meters], but the version we sent to Mars has proven its robustness time and again."

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 03-05-2019 11:59 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Mars InSight Lander's 'Mole' Pauses Digging

NASA's Mars InSight lander has a probe designed to dig up to 16 feet (5 meters) below the surface and measure heat coming from inside the planet. After beginning to hammer itself into the soil on Thursday, Feb. 28, the 16-inch-long (40-centimeter-long) probe — part of an instrument called the Heat and Physical Properties Package, or HP3 — got about three-fourths of the way out of its housing structure before stopping. No significant progress was seen after a second bout of hammering on Saturday, March 2. Data suggests the probe, known as a "mole," is at a 15-degree tilt.

Scientists suspect it hit a rock or some gravel. The team had hoped there would be relatively few rocks below ground, given how few appear on the surface beside the lander. Even so, the mole was designed to push small rocks aside or wend its way around them. The instrument, which was provided for InSight by the German Aerospace Center (DLR), did so repeatedly during testing before InSight launched.

"The team has decided to pause the hammering for now to allow the situation to be analyzed more closely and jointly come up with strategies for overcoming the obstacle," HP3 Principal Investigator Tilman Spohn of DLR wrote in a blog post. He added that the team wants to hold off from further hammering for about two weeks.

Data show that the probe itself continues to function as expected: After heating by 50 degrees Fahrenheit (28 degrees Celsius), it measures how quickly that heat dissipates in the soil. This property, known as thermal conductivity, helps calibrate sensors embedded in a tether trailing from the back of the mole. Once the mole is deep enough, these tether sensors can measure Mars' natural heat coming from inside the planet, which is generated by radioactive materials decaying and energy left over from Mars' formation.

The team will be conducting further heating tests this week to measure the thermal conductivity of the upper surface. They will also use a radiometer on InSight's deck to measure temperature changes on the surface. Mars' moon Phobos will pass in front of the Sun several times this week; like a cloud passing overhead, the eclipse will darken and cool the ground around InSight.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 04-23-2019 02:51 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's InSight Detects First Likely 'Quake' on Mars

NASA's Mars InSight lander has measured and recorded for the first time ever a likely "marsquake."

The faint seismic signal, detected by the lander's Seismic Experiment for Interior Structure (SEIS) instrument, was recorded on April 6, the lander's 128th Martian day, or sol. This is the first recorded trembling that appears to have come from inside the planet, as opposed to being caused by forces above the surface, such as wind. Scientists still are examining the data to determine the exact cause of the signal.

"InSight's first readings carry on the science that began with NASA's Apollo missions," said InSight Principal Investigator Bruce Banerdt of NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. "We've been collecting background noise up until now, but this first event officially kicks off a new field: Martian seismology!"

The new seismic event was too small to provide solid data on the Martian interior, which is one of InSight's main objectives. The Martian surface is extremely quiet, allowing SEIS, InSight's specially designed seismometer, to pick up faint rumbles. In contrast, Earth's surface is quivering constantly from seismic noise created by oceans and weather. An event of this size in Southern California would be lost among dozens of tiny crackles that occur every day.

"The Martian Sol 128 event is exciting because its size and longer duration fit the profile of moonquakes detected on the lunar surface during the Apollo missions," said Lori Glaze, Planetary Science Division director at NASA Headquarters.

NASA's Apollo astronauts installed five seismometers that measured thousands of quakes while operating on the Moon between 1969 and 1977, revealing seismic activity on the Moon. Different materials can change the speed of seismic waves or reflect them, allowing scientists to use these waves to learn about the interior of the Moon and model its formation. NASA currently is planning to return astronauts to the Moon by 2024, laying the foundation that will eventually enable human exploration of Mars.

InSight's seismometer, which the lander placed on the planet's surface on Dec. 19, 2018, will enable scientists to gather similar data about Mars. By studying the deep interior of Mars, they hope to learn how other rocky worlds, including Earth and the Moon, formed.

Three other seismic signals occurred on March 14 (Sol 105), April 10 (Sol 132) and April 11 (Sol 133). Detected by SEIS' more sensitive Very Broad Band sensors, these signals were even smaller than the Sol 128 event and more ambiguous in origin. The team will continue to study these events to try to determine their cause.

Regardless of its cause, the Sol 128 signal is an exciting milestone for the team.

"We've been waiting months for a signal like this," said Philippe Lognonné, SEIS team lead at the Institut de Physique du Globe de Paris (IPGP) in France. "It's so exciting to finally have proof that Mars is still seismically active. We're looking forward to sharing detailed results once we've had a chance to analyze them."

Most people are familiar with quakes on Earth, which occur on faults created by the motion of tectonic plates. Mars and the Moon do not have tectonic plates, but they still experience quakes - in their cases, caused by a continual process of cooling and contraction that creates stress. This stress builds over time, until it is strong enough to break the crust, causing a quake.

Detecting these tiny quakes required a huge feat of engineering. On Earth, high-quality seismometers often are sealed in underground vaults to isolate them from changes in temperature and weather. InSight's instrument has several ingenious insulating barriers, including a cover built by JPL called the Wind and Thermal Shield, to protect it from the planet's extreme temperature changes and high winds.

SEIS has surpassed the team's expectations in terms of its sensitivity. The instrument was provided for InSight by the French space agency, Centre National d'Études Spatiales (CNES), while these first seismic events were identified by InSight's Marsquake Service team, led by the Swiss Federal Institute of Technology.

"We are delighted about this first achievement and are eager to make many similar measurements with SEIS in the years to come," said Charles Yana, SEIS mission operations manager at CNES.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 06-05-2019 10:04 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
InSight's Team Tries New Strategy to Help the 'Mole'

Scientists and engineers have a new plan for getting NASA InSight's heat probe, also known as the "mole," digging again on Mars. Part of an instrument called the Heat Flow and Physical Properties Package (HP3), the mole is a self-hammering spike designed to dig as much as 16 feet (5 meters) below the surface and record temperature.

But the mole hasn't been able to dig deeper than about 12 inches (30 centimeters) below the Martian surface since Feb. 28, 2019. The device's support structure blocks the lander's cameras from viewing the mole, so the team plans to use InSight's robotic arm to lift the structure out of the way. Depending on what they see, the team might use InSight's robotic arm to help the mole further later this summer.

HP3 is one of InSight's several experiments, all of which are designed to give scientists their first look at the deep interior of the Red Planet. InSight also includes a seismometer that recently recorded its first marsquake on April 6, 2019, followed by its largest seismic signal to date at 7:23 p.m. PDT (10:23 EDT) on May 22, 2019 — what is believed to be a marsquake of magnitude 3.0.

For the last several months, testing and analysis have been conducted at NASA's Jet Propulsion Laboratory in Pasadena, California, which leads the InSight mission, and the German Aerospace Center (DLR), which provided HP3, to understand what is preventing the mole from digging. Team members now believe the most likely cause is an unexpected lack of friction in the soil around InSight — something very different from soil seen on other parts of Mars. The mole is designed so that loose soil flows around it, adding friction that works against its recoil, allowing it to dig. Without enough friction, it will bounce in place.

"Engineers at JPL and DLR have been working hard to assess the problem," said Lori Glaze, director of NASA's Planetary Science Division. "Moving the support structure will help them gather more information and try at least one possible solution."

The lifting sequence will begin in late June, with the arm grasping the support structure (InSight conducted some test movements recently). Over the course of a week, the arm will lift the structure in three steps, taking images and returning them so that engineers can make sure the mole isn't being pulled out of the ground while the structure is moved. If removed from the soil, the mole can't go back in.

The procedure is not without risk. However, mission managers have determined that these next steps are necessary to get the instrument working again.

"Moving the support structure will give the team a better idea of what's happening. But it could also let us test a possible solution," said HP3 Principal Investigator Tilman Spohn of DLR. "We plan to use InSight's robotic arm to press on the ground. Our calculations have shown this should add friction to the soil near the mole."

A Q&A with team members about the mole and the effort to save it can be read here.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 10-03-2019 11:55 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's Push to Save the Mars InSight Lander's Heat Probe

NASA's InSight lander, which is on a mission to explore the deep interior of Mars, positioned its robotic arm this past weekend to assist the spacecraft's self-hammering heat probe. Known as "the mole," the probe has been unable to dig more than about 14 inches (35 centimeters) since it began burying itself into the ground on Feb. 28, 2019.

The maneuver is in preparation for a tactic, to be tried over several weeks, called "pinning."

"We're going to try pressing the side of the scoop against the mole, pinning it to the wall of its hole," said InSight Deputy Principal Investigator Sue Smrekar of NASA's Jet Propulsion Laboratory in Pasadena, California. "This might increase friction enough to keep it moving forward when mole hammering resumes."

Whether the extra pressure on the mole will compensate for the unique soil remains an unknown.

Designed to burrow as much as 16 feet (5 meters) underground to record the amount of heat escaping from the planet's interior, the mole needs friction from surrounding soil in order to dig: Without it, recoil from the self-hammering action causes it to simply bounce in place, which is what the mission team suspects is happening now.

While JPL manages the InSight mission for NASA, the German Aerospace Center (DLR) provided the heat probe, which is part of an instrument called the Heat Flow and Physical Properties Package (HP3). Back in June, the team devised a plan to help the heat probe. The mole wasn't designed to be picked up and relocated once it begins digging. Instead, the robotic arm removed a support structure intended to hold the mole steady as it digs into the Martian surface.

Removing the structure allowed the InSight team to get a better look at the hole that formed around the mole as it hammered. It's possible that the mole has hit a rock, but testing by DLR suggested the issue was soil that clumps together rather than falling around the mole as it hammers. Sure enough, the arm's camera discovered that below the surface appears to be 2 to 4 inches (5 to 10 centimeters) of duricrust, a kind of cemented soil thicker than anything encountered on other Mars missions and different from the soil the mole was designed for.

"All we know about the soil is what we can see in images InSight sends us," said Tilman Spohn, HP3's principal investigator at DLR. "Since we can't bring the soil to the mole, maybe we can bring the mole to the soil by pinning it in the hole."

Using a scoop on the robotic arm, the team poked and pushed the soil seven times over the summer in an effort to collapse the hole. No such luck. It shouldn't take much force to collapse the hole, but the arm isn't pushing at full strength. The team placed HP3 as far from the lander as possible so that the spacecraft's shadow wouldn't influence the heat probe's temperature readings. As a result, the arm, which wasn't intended to be used this way, has to stretch out and press at an angle, exerting much less force than if the mole were closer.

"We're asking the arm to punch above its weight," said Ashitey Trebi-Ollennu, the lead arm engineer at JPL. "The arm can't push the soil the way a person can. This would be easier if it could, but that's just not the arm we have."

Interplanetary rescue operations aren't new to NASA. The Mars Exploration Rover team helped save Spirit and Opportunity on more than one occasion. Coming up with workable solutions requires an extraordinary amount of patience and planning. JPL has a working replica of InSight to practice arm movements, and it has a working model of the heat probe as well.

Besides pinning, the team is also testing a technique to use the scoop in the way it was originally intended to work: scraping soil into the hole rather than trying to compress it. Both techniques might be visible to the public in raw images that come down from InSight in the near future.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 10-18-2019 08:03 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Mars InSight's 'Mole' Is Moving Again

NASA's InSight spacecraft has used its robotic arm to help its heat probe, known as "the mole," dig nearly 2 centimeters (3/4 of an inch) over the past week. While modest, the movement is significant: Designed to dig as much as 16 feet (5 meters) underground to gauge the heat escaping from the planet's interior, the mole has only managed to partially bury itself since it started hammering in February 2019.

The recent movement is the result of a new strategy, arrived at after extensive testing on Earth, which found that unexpectedly strong soil is holding up the mole's progress. The mole needs friction from surrounding soil in order to move: Without it, recoil from its self-hammering action will cause it to simply bounce in place. Pressing the scoop on InSight's robotic arm against the mole, a new technique called "pinning," appears to provide the probe with the friction it needs to continue digging.

Since Oct. 8, 2019, the mole has hammered 220 times over three separate occasions. Images sent down from the spacecraft's cameras have shown the mole gradually progressing into the ground. It will take more time — and hammering — for the team to see how far the mole can go.

The mole is part of an instrument called the Heat Flow and Physical Properties Package, or HP3, which was provided by the German Aerospace Center (DLR).

"Seeing the mole's progress seems to indicate that there's no rock blocking our path," said HP3 Principal Investigator Tilman Spohn of DLR. "That's great news! We're rooting for our mole to keep going."

NASA's Jet Propulsion Laboratory in Pasadena, California, leads the InSight mission. JPL has tested the robotic arm's movement using full-scale replicas of InSight and the mole. Engineers continue to test what would happen if the mole were to sink beneath the reach of the robotic arm. If it stops making progress, they might scrape soil on top of the mole, adding mass to resist the mole's recoil.

If no other options exist, they would consider pressing the scoop down directly on the top of the mole while trying to avoid the sensitive tether there; the tether provides power to and relays data from the instrument.

"The mole still has a way to go, but we're all thrilled to see it digging again," said Troy Hudson of JPL, an engineer and scientist who has led the mole recovery effort. "When we first encountered this problem, it was crushing. But I thought, 'Maybe there's a chance; let's keep pressing on.' And right now, I'm feeling giddy."

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 02-21-2020 10:55 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's Mars InSight Lander to Push on Top of the 'Mole'

After nearly a year of trying to dig into the Martian surface, the heat probe belonging to NASA's InSight lander is about to get a push. The mission team plans to command the scoop on InSight's robotic arm to press down on the "mole," the mini pile driver designed to hammer itself as much as 16 feet (5 meters) down. They hope that pushing down on the mole's top, also called the back cap, will keep it from backing out of its hole on Mars, as it did twice in recent months after nearly burying itself.

Above: NASA InSight recently moved its robotic arm closer to its digging device, called the "mole," in preparation to push on its top, or back cap.

Part of an instrument called the Heat Flow and Physical Properties Package, or HP3, the mole is a 16-inch-long (40-centimeter-long) spike equipped with an internal hammering mechanism. While burrowing into the soil, it is designed to drag with it a ribbonlike tether that extends from the spacecraft. Temperature sensors are embedded along the tether to measure heat coming deep from within the planet's interior to reveal important scientific details about the formation of Mars and all rocky planets, including Earth. HP3 was provided to NASA by the German Aerospace Center, or DLR.

The team has avoided pushing on the back cap until now to avoid any potential damage to the tether.

The mole found itself stuck on Feb. 28, 2019, the first day of hammering. The InSight team has since determined that the soil here is different than what has been encountered on other parts of Mars.InSight landed in an area with an unusually thick duricrust, or a layer of cemented soil. Rather than being loose and sandlike, as expected, the dirt granules stick together.

The mole needs friction from soil in order to travel downward; without it, recoil from its self-hammering action causes it to simply bounce in place. Ironically, loose soil, not duricrust, provides that friction as it falls around the mole.

This past summer, the InSight team started using the robotic arm's scoop to press on the side of the mole, a technique called "pinning" that added just enough friction to help it dig without coming in contact with the fragile science tether connected to the mole's back cap.

While pinning helped, the mole popped back out of the Martian soil on two occasions, possibly from soil building up from beneath. With few alternatives left, the team has decided to try helping the mole dig by carefully pressing on its back cap while attempting to avoid the tether.

It might take several tries to perfect the back-cap push, just as pinning did. Throughout late February and early March, InSight's arm will be maneuvered into position so that the team can test what happens as the mole briefly hammers.

Meanwhile, the team is also considering using the scoop to move more soil into the hole that has formed around the mole. This could add more pressure and friction, allowing it to finally dig down. Whether they pursue this route depends on how deep the mole is able to travel after the back-cap push.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 02-25-2020 01:52 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
A Year of Surprising Science From NASA's InSight Mars Mission

A new understanding of Mars is beginning to emerge, thanks to the first year of NASA's InSight lander mission. Findings described in a set of six papers published today (Feb. 24) reveal a planet alive with quakes, dust devils and strange magnetic pulses.

Five of the papers were published in Nature. An additional paper in Nature Geoscience details the InSight spacecraft's landing site, a shallow crater nicknamed "Homestead hollow" in a region called Elysium Planitia.

InSight is the first mission dedicated to looking deep beneath the Martian surface. Among its science tools are a seismometer for detecting quakes, sensors for gauging wind and air pressure, a magnetometer, and a heat flow probe designed to take the planet's temperature.

While the team continues to work on getting the probe into the Martian surface as intended, the ultra-sensitive seismometer, called the Seismic Experiment for Interior Structure (SEIS), has enabled scientists to "hear" multiple trembling events from hundreds to thousands of miles away.

Seismic waves are affected by the materials they move through, giving scientists a way to study the composition of the planet's inner structure. Mars can help the team better understand how all rocky planets, including Earth, first formed.

Underground

Mars trembles more often — but also more mildly — than expected. SEIS has found more than 450 seismic signals to date, the vast majority of which are probably quakes (as opposed to data noise created by environmental factors, like wind). The largest quake was about magnitude 4.0 in size — not quite large enough to travel down below the crust into the planet's lower mantle and core. Those are "the juiciest parts of the apple" when it comes to studying the planet's inner structure, said Bruce Banerdt, InSight principal investigator at JPL.

Scientists are ready for more: It took months after InSight's landing in November 2018 before they recorded the first seismic event. By the end of 2019, SEIS was detecting about two seismic signals a day, suggesting that InSight just happened to touch down at a particularly quiet time. Scientists still have their fingers crossed for "the Big One."

Mars doesn't have tectonic plates like Earth, but it does have volcanically active regions that can cause rumbles. A pair of quakes was strongly linked to one such region, Cerberus Fossae, where scientists see boulders that may have been shaken down cliffsides. Ancient floods there carved channels nearly 800 miles (1,300 kilometers) long. Lava flows then seeped into those channels within the past 10 million years — the blink of an eye in geologic time.

Some of these young lava flows show signs of having been fractured by quakes less than 2 million years ago. "It's just about the youngest tectonic feature on the planet," said planetary geologist Matt Golombek of JPL. "The fact that we're seeing evidence of shaking in this region isn't a surprise, but it's very cool."

At the Surface

Billions of years ago, Mars had a magnetic field. It is no longer present, but it left ghosts behind, magnetizing ancient rocks that are now between 200 feet (61 meters) to several miles below ground. InSight is equipped with a magnetometer — the first on the surface of Mars to detect magnetic signals.

The magnetometer has found that the signals at Homestead hollow are 10 times stronger than what was predicted based on data from orbiting spacecraft that study the area. The measurements of these orbiters are averaged over a couple of hundred miles, whereas InSight's measurements are more local.

Because most surface rocks at InSight's location are too young to have been magnetized by the planet's former field, "this magnetism must be coming from ancient rocks underground," said Catherine Johnson, a planetary scientist at the University of British Columbia and the Planetary Science Institute. "We're combining these data with what we know from seismology and geology to understand the magnetized layers below InSight. How strong or deep would they have to be for us to detect this field?"

In addition, scientists are intrigued by how these signals change over time. The measurements vary by day and night; they also tend to pulse around midnight. Theories are still being formed as to what causes such changes, but one possibility is that they're related to the solar wind interacting with the Martian atmosphere

In the Wind

InSight measures wind speed, direction and air pressure nearly continuously, offering more data than previous landed missions. The spacecraft's weather sensors have detected thousands of passing whirlwinds, which are called dust devils when they pick up grit and become visible. "This site has more whirlwinds than any other place we've landed on Mars while carrying weather sensors," said Aymeric Spiga, an atmospheric scientist at Sorbonne University in Paris.

Despite all that activity and frequent imaging, InSight's cameras have yet to see dust devils. But SEIS can feel these whirlwinds pulling on the surface like a giant vacuum cleaner. "Whirlwinds are perfect for subsurface seismic exploration," said Philippe Lognonné of Institut de Physique du Globe de Paris (IPGP), principal investigator of SEIS.

Still to Come: The Core

InSight has two radios: one for regularly sending and receiving data, and a more powerful radio designed to measure the "wobble" of Mars as it spins. This X-band radio, also known as the Rotation and Interior Structure Experiment (RISE), can eventually reveal whether the planet's core is solid or liquid. A solid core would cause Mars to wobble less than a liquid one would.

This first year of data is just a start. Watching over a full Martian year (two Earth years) will give scientists a much better idea of the size and speed of the planet's wobble.

Robert Pearlman
Editor

Posts: 49707
From: Houston, TX
Registered: Nov 1999

posted 07-07-2020 01:34 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's InSight Flexes Its Arm While Its 'Mole' Hits Pause

NASA's InSight lander has been using its robotic arm to help the heat probe known as the "mole" burrow into Mars. The mission is providing the first look at the Red Planet's deep interior to reveal details about the formation of Mars and, ultimately, all rocky planets, including Earth.

Above: NASA InSight's 'Mole' Taps the Bottom of the Lander's Scoop: The movement of sand grains in the scoop on the end of NASA InSight's robotic arm suggests that the spacecraft's self-hammering "mole," which is in the soil beneath the scoop, had begun tapping the bottom of the scoop while hammering on June 20, 2020. (NASA/JPL-Caltech)

Akin to a 16-inch-long (40-centimeter-long) pile driver, the self-hammering mole has experienced difficulty getting into the Martian soil since February 2019. It's mostly buried now, thanks to recent efforts to push down on the mole with the scoop on the end of the robotic arm. But whether it will be able to dig deep enough – at least 10 feet (3 meters) – to get an accurate temperature reading of the planet remains to be seen. Images taken by InSight during a Saturday, June 20, hammering session show bits of soil jostling within the scoop – possible evidence that the mole had begun bouncing in place, knocking the bottom of the scoop.

While the campaign to save the mole continues, the arm will be used to help carry out other science and engineering work. Here's what you can expect in the months ahead from the mission, which is led by NASA's Jet Propulsion Laboratory in Southern California.

What's next for the mole?

The mole is part of an instrument called the Heat Flow and Physical Properties Package, or HP3, that the German Aerospace Center (DLR) provided NASA. While the scoop on the end of InSight's arm has blocked the mole from backing out of its pit again, it also blocks the arm's camera from seeing the mole and the pit that has formed around it. Over the next few weeks, the team will move the arm out of the way to better assess how the soil and mole are interacting.

The mole needs friction from soil in order to burrow. Ironically, loose soil provides that friction as it collapses around the mole. But the soil beneath InSight has proven to be cement-like duricrust, with dirt granules that stick together. As a result, recoil from the mole's self-hammering action causes it to bounce in place. So the team's next moves may be to provide that friction by scraping or chopping nearby soil to move it into the pit it's in.

More thoughts about the mole's recent progress can be found on a blog written by HP3's principal investigator, Tilman Spohn of DLR.

What's next for InSight's arm?

InSight landed on Mars on Nov. 26, 2018. Its robotic arm subsequently set HP3, a seismometer and the seismometer's Wind and Thermal Shield on to the planet's surface. While the arm has been key to helping the mole, scientists and engineers are eager to use the arm's camera to pan over InSight's solar panels, something they haven't done since July 17, 2019.

It's the dusty season on Mars, and the panels are likely coated with a fine layer of reddish-brown particles. Estimating how much dust is on the solar panels will let engineers better understand InSight's daily power supply.

Scientists also want to resume using the arm to spot meteors streaking across the night sky, as they did earlier in the mission. Doing so could help them predict how often meteors strike this part of the planet. They could also cross-check to see whether data from InSight's seismometer reveals a meteor impact on Mars shortly afterward.

What's next for the seismometer?

InSight's seismometer, called the Seismic Experiment for Interior Structure (SEIS), detected its first marsquake nearly three months after starting its measurements in January 2019. By the fall of 2019, it was detecting a potential quake or two per day. While SEIS has detected more than 480 seismic signals overall, the rate has dropped to less than one per week.

This rate change is tied to seasonal variations of atmospheric turbulence, which creates noise that covers up the tiny quake signals. Despite the protective Wind and Thermal Shield, SEIS is sensitive enough that shaking from the wind hitting the shield can make quakes harder to isolate.

SpaceAholic
Member

Posts: 5191
From: Sierra Vista, Arizona
Registered: Nov 1999

posted 08-25-2020 08:36 AM     Click Here to See the Profile for SpaceAholic   Click Here to Email SpaceAholic     Edit/Delete Message   Reply w/Quote
NASA release
NASA Engineers Checking InSight's Weather Sensors

An electronics issue is suspected to be preventing the sensors from sharing their data about Mars weather with the spacecraft.

Weather sensors aboard NASA's InSight Mars lander stopped providing data on Sunday, Aug. 16, 2020, a result of an issue affecting the sensor suite's electronics. Engineers at NASA's Jet Propulsion Laboratory in Southern California are working to understand the cause of the issue.

Called the Auxiliary Payload Sensor Suite (APSS), the sensors collect data on wind speed and direction, air temperature and pressure, and magnetic fields. Throughout each Martian day, or sol, InSight's main computer retrieves data stored in APSS' control computer for later transmission to orbiting spacecraft, which relay the data to Earth.

APSS is in safe mode and unlikely to be reset before the end of the month while mission team members work toward a diagnosis. JPL engineers are optimistic that resetting the control computer may address the issue but need to investigate the situation further before returning the sensors to normal.

Update Sept. 14, 2020:
On Sept. 6, 2020, InSight's weather sensors (collectively called the Auxiliary Payload Sensor Suite, or APSS) were reset. They appear to be operating nominally again, gathering data on wind speed and direction, air temperature and pressure, and magnetic fields. Although the issue that required APSS to be reset has not been determined, the team will continue to carefully monitor the situation.


This topic is 2 pages long:   1  2 

All times are CT (US)

next newest topic | next oldest topic

Administrative Options: Close Topic | Archive/Move | Delete Topic
Post New Topic  Post A Reply
Hop to:

Contact Us | The Source for Space History & Artifacts

Copyright 2022 collectSPACE.com All rights reserved.


Ultimate Bulletin Board 5.47a





advertisement