Space News
space history and artifacts articles

Messages
space history discussion forums

Sightings
worldwide astronaut appearances

Resources
selected space history documents

  collectSPACE: Messages
  Satellites - Robotic Probes
  NASA's Dawn probe to asteroids Vesta, Ceres (Page 1)

Post New Topic  Post A Reply
profile | register | preferences | faq | search


This topic is 2 pages long:   1  2 
next newest topic | next oldest topic
Author Topic:   NASA's Dawn probe to asteroids Vesta, Ceres
Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 09-27-2007 07:44 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
By Dawn's early light...

Rising above a cloud-filled horizon, the Delta II rocket carrying the Dawn spacecraft roars into the sky.

Liftoff was at 7:34 a.m. EDT from Pad 17-B at Cape Canaveral Air Force Station.

Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter.

The mission is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 09-27-2007 04:28 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA's Dawn Spacecraft Enroute to Shed Light on Asteroid Belt

NASA's Dawn spacecraft is on its way to study a pair of asteroids after lifting off Thursday from the Cape Canaveral Air Force Station at 7:34 a.m. EDT.

Mission controllers at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., received telemetry on schedule at 9:44 a.m. indicating Dawn had achieved proper orientation in space and its massive solar array was generating power from the sun.

"Dawn has risen, and the spacecraft is healthy," said the mission's project manager Keyur Patel of JPL. "About this time tomorrow [Friday morning], we will have passed the moon's orbit."

During the next 80 days, spacecraft controllers will test and calibrate the myriad of spacecraft systems and subsystems, ensuring Dawn is ready for the long journey ahead.

"Dawn will travel back in time by probing deep into the asteroid belt," said Dawn Principal Investigator Christopher Russell, University of California, Los Angeles. "This is a moment the space science community has been waiting for since interplanetary spaceflight became possible."

Dawn's 3-billion-mile odyssey includes exploration of asteroid Vesta in 2011 and the dwarf planet Ceres in 2015. These two icons of the asteroid belt have been witness to much of our solar system's history. By using Dawn's instruments to study both asteroids, scientists more accurately can compare and contrast the two. Dawn's science instrument suite will measure elemental and mineral composition, shape, surface topography, tectonic history, and it will seek water-bearing minerals. In addition, the Dawn spacecraft and how it orbits Vesta and Ceres will be used to measure the celestial bodies' masses and gravity fields.

The spacecraft's engines use a unique, hyper-efficient system called ion propulsion, which uses electricity to ionize xenon to generate thrust. The 12-inch-wide ion thrusters provide less power than conventional engines but can maintain thrust for months at a time.

The management of the Dawn launch was the responsibility of NASA's Kennedy Space Center, Fla. The Delta 2 launch vehicle was provided by United Launch Alliance, Denver.

The Dawn mission to Vesta and Ceres is managed by JPL, a division of the California Institute of Technology, Pasadena, for NASA's Science Mission Directorate, Washington.

The University of California, Los Angeles, is responsible for overall Dawn mission science. Other scientific partners include Los Alamos National Laboratory, N.M.; Max Planck Institute for Solar System Research, Katlenburg, Germany; DLR Institute for Planetary Research, Berlin; Italian National Institute for Astrophysics, Rome; and the Italian Space Agency. Orbital Sciences Corporation of Dulles, Va., designed and built the Dawn spacecraft.

Philip
Member

Posts: 5952
From: Brussels, Belgium
Registered: Jan 2001

posted 01-11-2008 02:09 PM     Click Here to See the Profile for Philip   Click Here to Email Philip     Edit/Delete Message   Reply w/Quote
YouTube: Alice's trip to the Dawn Launch

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 02-18-2009 09:38 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
SPACE.com: Asteroid-Bound Probe Zooms Past Mars
NASA's Dawn asteroid probe zoomed past the planet Mars late Tuesday to grab a speed boost aimed at flinging it on toward the largest space rocks in the solar system.

The ion-powered spacecraft used the gravitational pull of Mars to slingshot around the planet and hurtle outward toward its next stop, the asteroid Vesta. The maneuver was expected to boost Dawn's speed by more than 5,800 mph (9,330 kph) and set the asteroid probe on track to reach Vesta in August 2011.

...Tuesday's Mars flyby was expected to give Dawn a power boost equivalent to about 230 pounds (104 kg) of xenon fuel. For comparison, Dawn's current setup allows it to fire its engines for more than 24 hours while consuming about 9 ounces ( 0.26 kg) of fuel.

Dawn is expected to fire its engine for about 50,000 hours - more than any other spacecraft - by the end of its mission. Japan's asteroid probe Hayabusa, which reignited its xenon engine last month, has fired its ion drive for more than 30,000 hours during its mission to the space rock Itokawa. Hayabusa is slowly returning to Earth to deliver a capsule that may contain samples of the Itokawa asteroid.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 06-30-2010 05:38 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA update
Engineers Assess Dawn's Reaction Wheel

Engineers are studying the reaction wheels on NASA's Dawn spacecraft after automatic sensors detected excess friction building up in one of them and powered it off early on the morning of June 17, 2010. Reaction wheels spin to help a spacecraft maintain attitude control, and Dawn, which is exploring the asteroid belt, uses three wheels in normal operations.

The three other reaction wheels are functioning normally. Mission managers said plans for Dawn to visit the asteroid Vesta in 2011 and 2012 and dwarf planet Ceres in 2015 will not be not affected.

"We're looking at the data carefully in order to understand what the long-term prospects are for this reaction wheel," said Marc Rayman, Dawn's chief engineer, based at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "In the meantime, we're continuing our planned activities with the spacecraft." The spacecraft resumed ion thrusting on schedule, on June 24.

Flight controllers had uploaded software to Dawn's primary flight computer on June 15. As a planned part of that activity, all four reaction wheels had been powered on. Two days later, while the spacecraft was not performing any science or engineering activities, the one reaction wheel built up excess friction. The spacecraft's fault protection system acted as designed and turned the wheel off.

Engineers are analyzing what caused the friction buildup on the reaction wheel. But they do not believe the new software, the reactivation of the spacecraft, or a recent velocity change triggered the reaction wheel issue.

To read more about the software update and reaction wheels, see Rayman's Dawn Journal entry for June.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 05-03-2011 03:00 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA update
NASA Dawn Spacecraft Reaches Milestone Approaching Asteroid

NASA's Dawn spacecraft has reached its official approach phase to the asteroid Vesta and will begin using cameras for the first time to aid navigation for an expected July 16 orbital encounter. The large asteroid is known as a protoplanet – a celestial body that almost formed into a planet.

At the start of this three-month final approach to this massive body in the asteroid belt, Dawn is 752,000 miles (1.21 million kilometers) from Vesta, or about three times the distance between the Earth and the moon. During the approach phase, the spacecraft's main activity will be thrusting with a special, hyper-efficient ion engine that uses electricity to ionize and accelerate xenon to generate thrust. The 12-inch-wide ion thrusters provide less thrust than conventional engines, but will provide propulsion for years during the mission and provide far greater capability to change velocity.

"We feel a little like Columbus approaching the shores of the New World," said Christopher Russell, Dawn principal investigator, based at the University of California in Los Angeles (UCLA). "The Dawn team can't wait to start mapping this Terra Incognita."

Dawn previously navigated by measuring the radio signal between the spacecraft and Earth, and used other methods that did not involve Vesta. But as the spacecraft closes in on its target, navigation requires more precise measurements. By analyzing where Vesta appears relative to stars, navigators will pin down its location and enable engineers to refine the spacecraft's trajectory. Using its ion engine to match Vesta's orbit around the sun, the spacecraft will spiral gently into orbit around the asteroid. When Dawn gets approximately 9,900 miles (16,000 kilometers) from Vesta, the asteroid's gravity will capture the spacecraft in orbit.

"After more than three and a half years of interplanetary travel, we are finally closing in on our first destination," said Marc Rayman, Dawn's chief engineer, at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif. "We're not there yet, but Dawn will soon bring into focus an entire world that has been, for most of the two centuries scientists have been studying it, little more than a pinpoint of light."

Scientists will search the framing camera images for possible moons around Vesta. None of the images from ground-based and Earth-orbiting telescopes have seen any moons, but Dawn will give scientists much more detailed images to determine whether small objects have gone undiscovered.

The gamma ray and neutron detector instrument also will gather information on cosmic rays during the approach phase, providing a baseline for comparison when Dawn is much closer to Vesta. Simultaneously, Dawn's visible and infrared mapping spectrometer will take early measurements to ensure it is calibrated and ready when the spacecraft enters orbit around Vesta.

Dawn's odyssey, which will take it on a 3-billion-mile journey, began on Sept. 27, 2007, with its launch from Cape Canaveral Air Force Station in Florida. It will stay in orbit around Vesta for one year. After another long cruise phase, Dawn will arrive at its second destination, an even more massive body in the asteroid belt called Ceres, in 2015.

These two icons of the asteroid belt will help scientists unlock the secrets of our solar system's early history. The mission will compare and contrast the two giant asteroids, which were shaped by different forces. Dawn's science instrument suite will measure surface composition, topography and texture. In addition, the Dawn spacecraft will measure the tug of gravity from Vesta and Ceres to learn more about their internal structures.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 05-11-2011 04:14 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA update
NASA Dawn Spacecraft Captures First Image Of Nearing Asteroid

NASA's Dawn spacecraft has obtained its first image of the giant asteroid Vesta, which will help fine-tune navigation during its approach. Dawn expects to achieve orbit around Vesta on July 16, when the asteroid is about 117 million miles from Earth.

The image from Dawn's framing cameras was taken on May 3 when the spacecraft began its approach and was approximately 752,000 miles (1.21 million km) from Vesta. The asteroid appears as a small, bright pearl against a background of stars. Vesta also is known as a protoplanet, because it is a large body that almost formed into a planet.

"After plying the seas of space for more than a billion miles, the Dawn team finally spotted its target," said Carol Raymond, Dawn's deputy principal investigator at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif. "This first image hints of detailed portraits to come from Dawn's upcoming visit."

Vesta is 330 miles (530 km) in diameter and the second most massive object in the asteroid belt. Ground- and space-based telescopes obtained images of the bright orb for about two centuries, but with little surface detail.

Mission managers expect Vesta's gravity to capture Dawn in orbit on July 16. To enter orbit, Dawn must match the asteroid's path around the sun, which requires very precise knowledge of the body's location and speed. By analyzing where Vesta appears relative to stars in framing camera images, navigators will pin down its location and enable engineers to refine the spacecraft's trajectory.

Dawn will start collecting science data in early August at an altitude of approximately 1,700 miles (2,700 km) above the asteroid's surface. As the spacecraft gets closer, it will snap multi-angle images allowing scientists to produce topographic maps. Dawn will later orbit at approximately 120 miles (200 km) to perform other measurements and obtain closer shots of parts of the surface. Dawn will remain in orbit around Vesta for one year. After another long cruise phase, Dawn will arrive in 2015 at its second destination, Ceres, an even more massive body in the asteroid belt.

Gathering information about these two icons of the asteroid belt will help scientists unlock the secrets of our solar system's early history. The mission will compare and contrast the two giant asteroids shaped by different forces. Dawn's science instruments will measure surface composition, topography and texture. Dawn also will measure the tug of gravity from Vesta and Ceres to learn more about their internal structures. The spacecraft's full odyssey will take it on a 3-billion-mile (5-billion-km) journey, which began with its launch in September 2007.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 06-13-2011 01:02 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA update
NASA Spacecraft Captures Video Of Asteroid Approach

Scientists working with NASA's Dawn spacecraft have created a new video showing the giant asteroid Vesta as the spacecraft approaches this unexplored world in the main asteroid belt.

The video loops 20 images obtained for navigation purposes on June 1. The images show a dark feature near Vesta's equator moving from left to right across the field of view as Vesta rotates. Images also show Vesta's jagged, irregular shape, hinting at the enormous crater known to exist at Vesta's south pole.

The images were obtained by a framing camera during a 30-minute period and show about 30 degrees of a rotation. The pixel size in these images is approaching the resolution of the best Hubble Space Telescope images of Vesta.

"Like strangers in a strange land, we're looking for familiar landmarks," said Jian-Yang Li, a Dawn participating scientist from the University of Maryland, College Park. "The shadowy spot is one of those – it appears to match a feature, known as 'Feature B,' from images of Vesta taken by NASA's Hubble Space Telescope."

Before orbiting Vesta on July 16, Dawn will gently slow down to about 75 mph (120 kph). NASA is expecting to release more images on a weekly basis, with more frequent images available once the spacecraft begins collecting science at Vesta.

"Vesta is coming more and more into focus," said Andreas Nathues, framing camera lead investigator, based at the Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany. "Dawn's framing camera is working exactly as anticipated."

The mission is managed by NASA's Jet Propulsion Laboratory in Pasadena, Calif., for the agency's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Ala. UCLA is responsible for overall Dawn mission science. Orbital Sciences Corp. of Dulles, Va., designed and built the Dawn spacecraft. The framing cameras were developed and built under the leadership of the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germay.

The German Aerospace Center (DLR) Institute of Planetary Research in Berlin made significant contributions in coordination with the Institute of Computer and Communication Network Engineering in Braunschweig. The framing camera project is funded by the Max Planck Society, DLR and NASA.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 06-26-2011 11:48 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA update
NASA Probe Nears Position for Year-Long Stay at Giant Asteroid

NASA's Dawn spacecraft is on track to begin the first extended visit to a large asteroid. The mission expects to go into orbit around Vesta on July 16 and begin gathering science data in early August. Vesta resides in the main asteroid belt and is thought to be the source of a large number of meteorites that fall to Earth.

"The spacecraft is right on target," said Robert Mase, Dawn project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif. "We look forward to exploring this unknown world during Dawn's one year stay in Vesta's orbit."

After traveling nearly four years and 1.7 billion miles (2.7 billion kilometers), Dawn is approximately 96,000 miles (155,000 kilometers) away from Vesta. When Vesta captures Dawn into its orbit, there will be approximately 9,900 miles (16,000 kilometers) between them. They will be approximately 117 million miles (188 million kilometers) away from Earth.

After Dawn enters Vesta's orbit, engineers will need a few days to determine the exact time of capture. Unlike other missions where a dramatic, nail-biting propulsive burn results in orbit insertion around a planet, Dawn has been using its placid ion propulsion system to subtly shape its path for years to match Vesta's orbit around the sun.

Images from Dawn's framing camera, taken for navigation purposes, show the slow progress toward Vesta. They also show Vesta rotating about 65 degrees in the field of view. The images are about twice as sharp as the best images of Vesta from NASA's Hubble Space Telescope, but the surface details Dawn will obtain are still a mystery.

"Navigation images from Dawn's framing camera have given us intriguing hints of Vesta, but we're looking forward to the heart of Vesta operations, when we begin officially collecting science data," said Christopher Russell, Dawn principal investigator, at the University of California, Los Angeles (UCLA). "We can't wait for Dawn to peel back the layers of time and reveal the early history of our solar system."

Dawn's three instruments are all functioning and appear to be properly calibrated. The visible and infrared mapping spectrometer, for example, has started to obtain images of Vesta that are larger than a few pixels in size. During the initial reconnaissance orbit, at approximately 1,700 miles (2,700 kilometers), the spacecraft will get a broad overview of Vesta with color pictures and data in different wavelengths of reflected light. The spacecraft will move into a high altitude mapping orbit, about 420 miles (680 kilometers) above the surface to systematically map the parts of Vesta's surface illuminated by the sun; collect stereo images to see topographic highs and lows; acquire higher resolution data to map rock types at the surface; and learn more about Vesta's thermal properties.

Dawn then will move even closer, to a low-altitude mapping orbit approximately 120 miles (200 kilometers) above the surface. The primary science goals of this orbit are to detect the byproducts of cosmic rays hitting the surface and help scientists determine the many kinds of atoms there, and probe the protoplanet's internal structure. As Dawn spirals away from Vesta, it will pause again at the high-altitude mapping orbit altitude. Because the sun's angle on the surface will have progressed, scientists will be able to see previously hidden terrain while obtaining different views of surface features.

"We've packed our year at Vesta chock-full of science observations to help us unravel the mysteries of Vesta," said Carol Raymond, Dawn's deputy principal investigator at JPL. Vesta is considered a protoplanet, or body that never quite became a full-fledged planet.

Dawn launched in September 2007. Following a year at Vesta, the spacecraft will depart for its second destination, the dwarf planet Ceres, in July 2012. Dawn's mission to Vesta and Ceres is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

UCLA is responsible for overall Dawn mission science. Orbital Sciences Corp. of Dulles, Va., designed and built the spacecraft. The German Aerospace Center, the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute are part of the mission team.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 07-14-2011 10:01 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA Spacecraft To Enter Large Asteroid's Orbit On July 15

On July 15, NASA's Dawn spacecraft will begin a prolonged encounter with the asteroid Vesta, making the mission the first to enter orbit around a main-belt asteroid.

The main asteroid belt lies between the orbits of Mars and Jupiter. Dawn will study Vesta for one year, and observations will help scientists understand the earliest chapter of our solar system's history.

As the spacecraft approaches Vesta, surface details are coming into focus, as seen in a recent image taken from a distance of about 26,000 miles (41,000 kilometers).

Engineers expect the spacecraft to be captured into orbit at approximately 10 p.m. PDT Friday, July 15. They expect to hear from the spacecraft and confirm that it performed as planned during a scheduled communications pass that starts at approximately 11:30 p.m. PDT on Saturday, July 16. When Vesta captures Dawn into its orbit, engineers estimate there will be approximately 9,900 miles (16,000 kilometers) between them. At that point, the spacecraft and asteroid will be approximately 117 million miles (188 million kilometers) from Earth.

"It has taken nearly four years to get to this point," said Robert Mase, Dawn project manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Our latest tests and check-outs show that Dawn is right on target and performing normally."

Engineers have been subtly shaping Dawn's trajectory for years to match Vesta's orbit around the sun. Unlike other missions, where dramatic propulsive burns put spacecraft into orbit around a planet, Dawn will ease up next to Vesta. Then the asteroid's gravity will capture the spacecraft into orbit. However, until Dawn nears Vesta and makes accurate measurements, the asteroid's mass and gravity will only be estimates. The Dawn team will refine the exact moment of orbit capture over the next few days.

Launched in September 2007, Dawn will depart for its second destination, the dwarf planet Ceres, in July 2012. The spacecraft will be the first to orbit two bodies in our solar system.

Dawn's mission to Vesta and Ceres is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, which is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

UCLA is responsible for overall Dawn mission science. Orbital Sciences Corp. of Dulles, Va., designed and built the spacecraft. The German Aerospace Center, the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute are part of the mission team.

DChudwin
Member

Posts: 1096
From: Lincolnshire IL USA
Registered: Aug 2000

posted 07-17-2011 08:44 AM     Click Here to See the Profile for DChudwin   Click Here to Email DChudwin     Edit/Delete Message   Reply w/Quote
NASA has announced that the Dawn spacecraft is orbiting the asteroid Vesta.
NASA's Dawn Spacecraft Enters Orbit Around Asteroid Vesta

NASA's Dawn spacecraft on Saturday became the first probe ever to enter orbit around an object in the main asteroid belt between Mars and Jupiter.

Above: NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 9, 2011. It was taken from a distance of about 26,000 miles (41,000 kilometers) away from Vesta, which is also considered a protoplanet because it is a large body that almost became a planet. Each pixel in the image corresponds to roughly 2.4 miles (3.8 kilometers).

Dawn will study the asteroid, named Vesta, for a year before departing for a second destination, a dwarf planet named Ceres, in July 2012. Observations will provide unprecedented data to help scientists understand the earliest chapter of our solar system. The data also will help pave the way for future human space missions.

"Today, we celebrate an incredible exploration milestone as a spacecraft enters orbit around an object in the main asteroid belt for the first time," NASA Administrator Charles Bolden said. "Dawn's study of the asteroid Vesta marks a major scientific accomplishment and also points the way to the future destinations where people will travel in the coming years. President Obama has directed NASA to send astronauts to an asteroid by 2025, and Dawn is gathering crucial data that will inform that mission."

The spacecraft relayed information to confirm it entered Vesta's orbit, but the precise time this milestone occurred is unknown at this time. The time of Dawn's capture depended on Vesta's mass and gravity, which only has been estimated until now. The asteroid's mass determines the strength of its gravitational pull. If Vesta is more massive, its gravity is stronger, meaning it pulled Dawn into orbit sooner. If the asteroid is less massive, its gravity is weaker and it would have taken the spacecraft longer to achieve orbit. With Dawn now in orbit, the science team can take more accurate measurements of Vesta's gravity and gather more accurate timeline information.

Dawn, which launched in September 2007, is on track to become the first spacecraft to orbit two solar system destinations beyond Earth. The mission to Vesta and Ceres is managed by NASA's Jet Propulsion Laboratory in Pasadena, Calif., for the agency's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, which is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

The University of California, Los Angeles, is responsible for the overall Dawn mission science. Orbital Sciences Corp. of Dulles, Va., designed and built the spacecraft. The German Aerospace Center, the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute are part of the mission's team. JPL is a division of the California Institute of Technology in Pasadena.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 07-18-2011 02:40 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA Dawn Spacecraft Returns Close-Up Image Of Asteroid Vesta

NASA's Dawn spacecraft has returned the first close-up image after beginning its orbit around the giant asteroid Vesta. On Friday, July 15, Dawn became the first probe to enter orbit around an object in the main asteroid belt between Mars and Jupiter.

The image taken for navigation purposes shows Vesta in greater detail than ever before. When Vesta captured Dawn into its orbit, there were approximately 9,900 miles (16,000 kilometers) between the spacecraft and asteroid. Engineers estimate the orbit capture took place at 10 p.m. PDT.

Vesta is 330 miles (530 kilometers) in diameter and the second most massive object in the asteroid belt. Ground- and space-based telescopes have obtained images of Vesta for about two centuries, but they have not been able to see much detail on its surface.

"We are beginning the study of arguably the oldest extant primordial surface in the solar system," said Dawn principal investigator Christopher Russell from the University of California, Los Angeles. "This region of space has been ignored for far too long. So far, the images received to date reveal a complex surface that seems to have preserved some of the earliest events in Vesta's history, as well as logging the onslaught that Vesta has suffered in the intervening eons."

Vesta is thought to be the source of a large number of meteorites that fall to Earth. Vesta and its new NASA neighbor are currently approximately 117 million miles (188 million kilometers) away from Earth. The Dawn team will begin gathering science data in August. Observations will provide unprecedented data to help scientists understand the earliest chapter of our solar system. The data also will help pave the way for future human space missions.

After traveling nearly four years and 1.7 billion miles (2.8 billion kilometers), Dawn also accomplished the largest propulsive acceleration of any spacecraft, with a change in velocity of more than 4.2 miles per second (6.7 kilometers per second), due to its ion engines. The engines expel ions to create thrust and provide higher spacecraft speeds than any other technology currently available.

"Dawn slipped gently into orbit with the same grace it has displayed during its years of ion thrusting through interplanetary space," said Marc Rayman, Dawn chief engineer and mission manager at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif. "It is fantastically exciting that we will begin providing humankind its first detailed views of one of the last unexplored worlds in the inner solar system."

Although orbit capture is complete, the approach phase will continue for about three weeks. During approach the Dawn team will continue a search for possible moons around the asteroid; obtain more images for navigation; observe Vesta's physical properties; and obtain calibration data.

In addition, navigators will measure the strength of Vesta's gravitational tug on the spacecraft to compute the asteroid's mass with much greater accuracy than has been previously available. That will allow them to refine the time of orbit insertion.

Dawn will spend one year orbiting Vesta, then travel to a second destination, the dwarf planet Ceres, arriving in February 2015. The mission to Vesta and Ceres is managed by JPL for the agency's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, which is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

UCLA is responsible for Dawn mission science. Orbital Sciences Corp. of Dulles, Va., designed and built the spacecraft. The German Aerospace Center, the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute are part of the mission's team.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 08-01-2011 11:08 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's Dawn Spacecraft Begins Science Orbits of Vesta

NASA's Dawn spacecraft, the first ever to orbit an object in the main asteroid belt, is spiraling towards its first of four intensive science orbits. That initial orbit of the rocky world Vesta begins Aug. 11, at an altitude of nearly 1,700 miles (2,700 kilometers) and will provide in-depth analysis of the asteroid. Vesta is the brightest object in the asteroid belt as seen from Earth and is thought to be the source of a large number of meteorites that fall to Earth.

The Dawn team unveiled the first full-frame image of Vesta taken on July 24:

This image was taken at a distance of 3,200 miles (5,200 kilometers). Images from Dawn's framing camera, taken for navigation purposes and as preparation for scientific observations, are revealing the first surface details of the giant asteroid. These images go all the way around Vesta, since the giant asteroid turns on its axis once every five hours and 20 minutes.

"Now that we are in orbit around one of the last unexplored worlds in the inner solar system, we can see that it's a unique and fascinating place," said Marc Rayman, Dawn's chief engineer and mission manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif.

After traveling nearly four years and 1.7 billion miles (2.8 billion kilometers), Dawn has been captured by Vesta's gravity, and there currently are 1,800 miles (2,900 kilometers) between the asteroid and the spacecraft. The giant asteroid and its new neighbor are approximately 114 million miles (184 million kilometers) away from Earth.

"We have been calling Vesta the smallest terrestrial planet," said Chris Russell, Dawn's principal investigator at UCLA. "The latest imagery provides much justification for our expectations. They show that a variety of processes were once at work on the surface of Vesta and provide extensive evidence for Vesta's planetary aspirations."

Engineers still are working to determine the exact time that Dawn entered Vesta's orbit, but the team has reported an approximate orbit insertion time of 9:47 p.m. PDT on July 15 (12:47 a.m. EDT on July 16).

In addition to the framing camera, Dawn's instruments include the gamma ray and neutron detector and the visible and infrared mapping spectrometer. The gamma ray and neutron detector uses 21 sensors with a very wide field of view to measure the energy of subatomic particles emitted by the elements in the upper yard (meter) of the asteroid's surface. The visible and infrared mapping spectrometer will measure the surface mineralogy of both Vesta and Dawn's next target, the dwarf planet Ceres. The spectrometer is a modification of a similar one flying on the European Space Agency's Rosetta and Venus Express missions.

Dawn also will make another set of scientific measurements at Vesta and Ceres using the spacecraft's radio transmitter in tandem with sensitive antennas on Earth. Scientists will monitor signals from Dawn and later Ceres to detect subtle variations in the objects' gravity fields. These variations will provide clues about the interior structure of these bodies by studying the mass distributed in each gravity field.

"The new observations of Vesta are an inspirational reminder of the wonders unveiled through ongoing exploration of our solar system," said Jim Green, planetary division director at NASA Headquarters in Washington.

Dawn launched in September 2007. Following a year at Vesta, the spacecraft will depart in July 2012 for Ceres, where it will arrive in 2015. Dawn's mission to Vesta and Ceres is managed by JPL for NASA's Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology in Pasadena. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

UCLA is responsible for overall Dawn mission science. Orbital Sciences Corp. in Dulles, Va., designed and built the spacecraft. The German Aerospace Center, the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute are international partners on the mission team.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 08-11-2011 07:42 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's Asteroid Photographer Beams Back Science Data

NASA's Dawn spacecraft has completed a graceful spiral into the first of four planned science orbits during the spacecraft's yearlong visit to Vesta. The spacecraft started taking detailed observations on Aug. 11 at 9:13 a.m. PDT (12:13 a.m. EDT), which marks the official start of the first science-collecting orbit phase at Vesta, also known as the survey orbit.


Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Above: This anaglyph image of Vesta's equator was put together from two clear filter images, taken on July 24, 2011 by the framing camera instrument aboard NASA's Dawn spacecraft.

Survey orbit is the initial and highest orbit, at roughly 1700 miles (2700 kilometers) above the surface, which will provide an overview or "big picture" perspective of the giant asteroid.

The primary objective of survey orbit is to image the surface with near-global coverage in visible and infrared wavelengths with the mapping spectrometer, also known as VIR. Dawn also will be using its framing camera to collect image mosaics that complement the VIR spectral data to produce geologic and compositional maps of Vesta's surface. Ultrasensitive measurements of the spacecraft's motion using radio signals will allow improved understanding of the giant asteroid's gravity field. Dawn's gamma ray and neutron detector will continue to collect background data.

The survey phase is planned to last 20 days. Each orbit takes almost three days, which will provide the spacecraft seven trips around Vesta. After survey orbit, Dawn will resume thrusting, taking about a month to spiral down gently to its next science orbit for an even closer view. That orbit, known as High Altitude Mapping Orbit, or HAMO, begins in late September. Dawn will spend about a month in HAMO, circling around Vesta in half a day, rather than three. Dawn will orbit more than 60 times during HAMO, allowing the camera to fully map the illuminated portion of Vesta at even higher resolution, and enable the science team to generate stereo images.

SpaceAholic
Member

Posts: 4437
From: Sierra Vista, Arizona
Registered: Nov 1999

posted 04-20-2012 04:23 PM     Click Here to See the Profile for SpaceAholic   Click Here to Email SpaceAholic     Edit/Delete Message   Reply w/Quote
NASA release
Dawn Gets Extra Time to Explore Vesta

NASA's Dawn mission has received official confirmation that 40 extra days have been added to its exploration of the giant asteroid Vesta, the second most massive object in the main asteroid belt. The mission extension allows Dawn to continue its scientific observations at Vesta until Aug. 26, while still arriving at the dwarf planet Ceres at the same originally scheduled target date in February 2015.

"We are leveraging our smooth and successful operations at Vesta to provide for even more scientific discoveries for NASA and the world." said Robert Mase, Dawn project manager based at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "This extra time will allow us to extend our scientific investigation and learn more about this mysterious world."

The extension will not require any new funding, and will draw on financial reserves that have been carefully managed by the Dawn project. The flexibility provided by the spacecraft's use of efficient ion propulsion system allows it to maintain its originally planned Ceres arrival.

The extension allows for extra observations at Dawn's current low-altitude mapping orbit (average altitude 130 miles or 210 kilometers), which will now last until May 1. The additional time enables the gamma ray and neutron detector to build the best possible maps of the elemental composition of Vesta's surface and improve data for the gravity experiment, the two primary scientific investigations at the low-altitude orbit. The spacecraft's camera and spectrometer are also obtaining additional high-resolution images.

Additional time will also be spent in the planned second high-altitude mapping orbit later this summer. When Dawn arrived at Vesta in July 2011, much of the northern hemisphere was in shadow. But with the passage of time, more of that area will bask in sunshine.

"Dawn has beamed back to us such dazzling Vestan vistas that we are happy to stay a little longer and learn more about this special world," said Christopher Russell, Dawn's principal investigator at UCLA. "While we have this one-of-a-kind opportunity to orbit Vesta, we want to make the best and most complete datasets that we can."

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 05-10-2012 01:48 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA Dawn Mission Reveals Secrets of Large Asteroid

NASA's Dawn spacecraft has provided researchers with the first orbital analysis of the giant asteroid Vesta, yielding new insights into its creation and kinship with terrestrial planets and Earth's moon.

Vesta now has been revealed as a special fossil of the early solar system with a more varied, diverse surface than originally thought. Scientists have confirmed a variety of ways in which Vesta more closely resembles a small planet or Earth's moon than another asteroid. Results appear in today's edition of the journal Science.

"Dawn's visit to Vesta has confirmed our broad theories of this giant asteroid's history, while helping to fill in details it would have been impossible to know from afar," said Carol Raymond, deputy principal investigator at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Dawn's residence at Vesta of nearly a year has made the asteroid's planet-like qualities obvious and shown us our connection to that bright orb in our night sky."

Scientists now see Vesta as a layered, planetary building block with an iron core – the only one known to survive the earliest days of the solar system. The asteroid's geologic complexity can be attributed to a process that separated the asteroid into a crust, mantle and iron core with a radius of approximately 68 miles (110 kilometers) about 4.56 billion years ago. The terrestrial planets and Earth's moon formed in a similar way.

Dawn observed a pattern of minerals exposed by deep gashes created by space rock impacts, which may support the idea the asteroid once had a subsurface magma ocean. A magma ocean occurs when a body undergoes almost complete melting, leading to layered building blocks that can form planets. Other bodies with magma oceans ended up becoming parts of Earth and other planets.

Data also confirm a distinct group of meteorites found on Earth did, as theorized, originate from Vesta. The signatures of pyroxene, an iron- and magnesium-rich mineral, in those meteorites match those of rocks on Vesta's surface. These objects account for about 6 percent of all meteorites seen falling on Earth.

This makes the asteroid one of the largest single sources for Earth's meteorites. The finding also marks the first time a spacecraft has been able to visit the source of samples after they were identified on Earth.

Scientists now know Vesta's topography is quite steep and varied. Some craters on Vesta formed on very steep slopes and have nearly vertical sides, with landslides occurring more frequently than expected.

Another unexpected finding was that the asteroid's central peak in the Rheasilvia basin in the southern hemisphere is much higher and wider, relative to its crater size, than the central peaks of craters on bodies like our moon. Vesta also bears similarities to other low-gravity worlds like Saturn's small icy moons, and its surface has light and dark markings that don't match the predictable patterns on Earth's moon.

"We know a lot about the moon and we're only coming up to speed now on Vesta," said Vishnu Reddy, a framing camera team member at the Max Planck Institute for Solar System Research in Germany and the University of North Dakota in Grand Forks. "Comparing the two gives us two storylines for how these fraternal twins evolved in the early solar system."

Dawn has revealed details of ongoing collisions that battered Vesta throughout its history. Dawn scientists now can date the two giant impacts that pounded Vesta's southern hemisphere and created the basin Veneneia approximately 2 billion years ago and the Rheasilvia basin about 1 billion years ago. Rheasilvia is the largest impact basin on Vesta.

"The large impact basins on the moon are all quite old," said David O'Brien, a Dawn participating scientist from the Planetary Science Institute in Tucson, Ariz. "The fact that the largest impact on Vesta is so young was surprising."

Launched in 2007, Dawn began exploring Vesta in mid-2011. The spacecraft will depart Vesta on August 26 for its next study target, the dwarf planet Ceres, in 2015.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 09-05-2012 07:59 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Dawn departs the giant asteroid Vesta

Mission controllers received confirmation today (Sept. 5) that NASA's Dawn spacecraft has escaped from the gentle gravitational grip of the giant asteroid Vesta. Dawn is now officially on its way to its second destination, the dwarf planet Ceres.

Dawn departed from Vesta at about 11:26 p.m. PDT on Sept. 4 (2:26 a.m. EDT on Sept. 5). Communications from the spacecraft via NASA's Deep Space Network confirmed the departure and that the spacecraft is now traveling toward Ceres.

"As we respectfully say goodbye to Vesta and reflect on the amazing discoveries over the past year, we eagerly look forward to the next phase of our adventure at Ceres, where even more exciting discoveries await,” said Robert Mase, Dawn project manager, based at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

Launched on Sept. 27, 2007, Dawn slipped into orbit around Vesta on July 15, 2011 PDT (July 16 EDT). Over the past year, Dawn has comprehensively mapped this previously uncharted world, revealing an exotic and diverse planetary building block. The findings are helping scientists unlock some of the secrets of how the solar system, including our own Earth, was formed.

Dawn spiraled away from Vesta as gently as it arrived. It is expected to pull into its next port of call, Ceres, in early 2015.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 01-19-2015 02:24 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Dawn Delivers New Image of Ceres

As NASA's Dawn spacecraft closes in on Ceres, new images show the dwarf planet at 27 pixels across, about three times better than the calibration images taken in early December. These are the first in a series of images that will be taken for navigation purposes during the approach to Ceres.

Over the next several weeks, Dawn will deliver increasingly better and better images of the dwarf planet, leading up to the spacecraft's capture into orbit around Ceres on March 6. The images will continue to improve as the spacecraft spirals closer to the surface during its 16-month study of the dwarf planet.

Above: The Dawn spacecraft observed Ceres for an hour on Jan. 13, 2015, from a distance of 238,000 miles (383,000 kilometers). A little more than half of its surface was observed at a resolution of 27 pixels. This animated GIF shows bright and dark features.

"We know so much about the solar system and yet so little about dwarf planet Ceres. Now, Dawn is ready to change that," said Marc Rayman, Dawn's chief engineer and mission director, based at NASA's Jet Propulsion Laboratory in Pasadena, California.

The best images of Ceres so far were taken by NASA's Hubble Space Telescope in 2003 and 2004. This most recent images from Dawn, taken January 13, 2015, at about 80 percent of Hubble resolution, are not quite as sharp. But Dawn's images will surpass Hubble's resolution at the next imaging opportunity, which will be at the end of January.

"Already, the [latest] images hint at first surface structures such as craters," said Andreas Nathues, lead investigator for the framing camera team at the Max Planck Institute for Solar System Research, Gottingen, Germany.

Ceres is the largest body in the main asteroid belt, which lies between Mars and Jupiter. It has an average diameter of 590 miles (950 kilometers), and is thought to contain a large amount of ice. Some scientists think it's possible that the surface conceals an ocean.

Dawn's arrival at Ceres will mark the first time a spacecraft has ever visited a dwarf planet.

"The team is very excited to examine the surface of Ceres in never-before-seen detail," said Chris Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles. "We look forward to the surprises this mysterious world may bring."

The spacecraft has already delivered more than 30,000 images and many insights about Vesta, the second most massive body in the asteroid belt. Dawn orbited Vesta, which has an average diameter of 326 miles (525 kilometers), from 2011 to 2012. Thanks to its ion propulsion system, Dawn is the first spacecraft ever targeted to orbit two deep-space destinations.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 02-17-2015 04:37 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA photo release
Dawn Captures Sharper Images of Ceres

Craters and mysterious bright spots are beginning to pop out in the latest images of Ceres from NASA's Dawn spacecraft. These images, taken Feb. 12 at a distance of 52,000 miles (83,000 kilometers) from the dwarf planet, pose intriguing questions for the science team to explore as the spacecraft nears its destination.

"As we slowly approach the stage, our eyes transfixed on Ceres and her planetary dance, we find she has beguiled us but left us none the wiser," said Chris Russell, principal investigator of the Dawn mission, based at UCLA. "We expected to be surprised; we did not expect to be this puzzled."

Dawn will be gently captured into orbit around Ceres on March 6. As the spacecraft delivers better images and other data, the science team will be investigating the nature and composition of the dwarf planet, including the nature of the craters and bright spots that are coming into focus. The latest images, which have a resolution of 4.9 miles (7.8 kilometers) per pixel, represent the sharpest views of Ceres to date.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 03-02-2015 11:33 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA Spacecraft Nears Historic Dwarf Planet Arrival

NASA's Dawn spacecraft has returned new images captured on approach to its historic orbit insertion at the dwarf planet Ceres. Dawn will be the first mission to successfully visit a dwarf planet when it enters orbit around Ceres on Friday, March 6.

"Dawn is about to make history," said Robert Mase, project manager for the Dawn mission at NASA's Jet Propulsion Laboratory in Pasadena, California. "Our team is ready and eager to find out what Ceres has in store for us."

Recent images show numerous craters and unusual bright spots that scientists believe tell how Ceres, the first object discovered in our solar system's asteroid belt, formed and whether its surface is changing. As the spacecraft spirals into closer and closer orbits around the dwarf planet, researchers will be looking for signs that these strange features are changing, which would suggest current geological activity.

"Studying Ceres allows us to do historical research in space, opening a window into the earliest chapter in the history of our solar system," said Jim Green, director of NASA's Planetary Science Division at the agency's Headquarters in Washington. "Data returned from Dawn could contribute significant breakthroughs in our understanding of how the solar system formed."

Dawn began its final approach phase toward Ceres in December. The spacecraft has taken several optical navigation images and made two rotation characterizations, allowing Ceres to be observed through its full nine-hour rotation. Since Jan. 25, Dawn has been delivering the highest-resolution images of Ceres ever captured, and they will continue to improve in quality as the spacecraft approaches.

Sicilian astronomer Father Giuseppe Piazzi spotted Ceres in 1801. As more such objects were found in the same region, they became known as asteroids, or minor planets. Ceres was initially classified as a planet and later called an asteroid. In recognition of its planet-like qualities, Ceres was designated a dwarf planet in 2006, along with Pluto and Eris.

Ceres is named for the Roman goddess of agriculture and harvests. Craters on Ceres will similarly be named for gods and goddesses of agriculture and vegetation from world mythology. Other features will be named for agricultural festivals.

Launched in September 2007, Dawn explored the giant asteroid Vesta for 14 months in 2011 and 2012, capturing detailed images and data about that body. Both Vesta and Ceres orbit the sun between Mars and Jupiter, in the main asteroid belt. This two-stop tour of our solar system is made possible by Dawn's ion propulsion system, its three ion engines being much more efficient than chemical propulsion.

"Both Vesta and Ceres were on their way to becoming planets, but their development was interrupted by the gravity of Jupiter," said Carol Raymond, deputy project scientist at JPL. "These two bodies are like fossils from the dawn of the solar system, and they shed light on its origins."

Ceres and Vesta have several important differences. Ceres is the most massive body in the asteroid belt, with an average diameter of 590 miles (950 kilometers). Ceres' surface covers about 38 percent of the area of the continental United States. Vesta has an average diameter of 326 miles (525 kilometers), and is the second most massive body in the belt. The asteroid formed earlier than Ceres and is a very dry body. Ceres, in contrast, is estimated to be 25 percent water by mass.

"By studying Vesta and Ceres, we will gain a better understanding of the formation of our solar system, especially the terrestrial planets and most importantly the Earth," said Raymond. "These bodies are samples of the building blocks that have formed Venus, Earth and Mars. Vesta-like bodies are believed to have contributed heavily to the core of our planet, and Ceres-like bodies may have provided our water."

"We would not be able to orbit and explore these two worlds without ion propulsion," Mase said. "Dawn capitalizes on this innovative technology to deliver big science on a small budget."

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 03-06-2015 08:45 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
collectSPACE
Dawn over Ceres: NASA craft enters orbit around dwarf planet

NASA's Dawn probe has entered orbit... again.

The first robotic probe to circle two different extraterrestrial worlds, Dawn slipped into orbit around Ceres, the smallest known dwarf planet and largest object in the asteroid belt, on Friday (March 6).

"Confirmed: I am in orbit around Ceres," Dawn's managers announced using the mission's Twitter account.

The spacecraft was 38,000 miles (61,000 kilometers) from Ceres when it was captured by the dwarf planet's gravity at about 7:39 a.m. EST (1239 GMT).

Mission controllers at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California received a signal from the spacecraft at 8:36 a.m. EST (1336 GMT) that Dawn was healthy and thrusting with its solar electric ion engine, the indicator Dawn had entered orbit as planned.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 04-08-2015 07:10 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Dawn in Excellent Shape One Month After Ceres Arrival

Since its capture by the gravity of dwarf planet Ceres on March 6, NASA's Dawn spacecraft has performed flawlessly, continuing to thrust with its ion engine as planned. The thrust, combined with Ceres' gravity, is gradually guiding the spacecraft into a circular orbit around the dwarf planet. All of the spacecraft's systems and instruments are in excellent health.

Dawn has been following its planned trajectory on the dark side of Ceres — the side facing away from the sun — since early March. After it entered orbit, the spacecraft's momentum carried it to a higher altitude, reaching a maximum of 46,800 miles (75,400 kilometers) on March 18. Today, Dawn is about 26,000 miles (42,000 kilometers) above Ceres, descending toward the first planned science orbit, which will be 8,400 miles (13,500 kilometers) above the surface.

The next optical navigation images of Ceres will be taken on April 10 and April 14, and are expected to be available online after initial analysis by the science team. In the first of these, the dwarf planet will appear as a thin crescent, much like the images taken on March 1, but with about 1.5 times higher resolution. The April 14 images will reveal a slightly larger crescent in even greater detail. Once Dawn settles into the first science orbit on April 23, the spacecraft will begin the intensive prime science campaign.

By early May, images will improve our view of the entire surface, including the mysterious bright spots that have captured the imaginations of scientists and space enthusiasts alike. What these reflections of sunlight represent is still unknown, but closer views should help determine their nature. The regions containing the bright spots will likely not be in view for the April 10 images; it is not yet certain whether they will be in view for the April 14 set.

On May 9, Dawn will complete its first Ceres science phase and begin to spiral down to a lower orbit to observe Ceres from a closer vantage point.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 04-16-2015 03:59 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Dawn Glimpses Ceres' North Pole

After spending more than a month in orbit on the dark side of dwarf planet Ceres, NASA's Dawn spacecraft has captured several views of the sunlit north pole of this intriguing world. These images were taken on April 10 from a distance of 21,000 miles (33,000 kilometers), and they represent the highest-resolution views of Ceres to date.

Subsequent images of Ceres will show surface features at increasingly better resolution.

Dawn arrived at Ceres on March 6, marking the first time a spacecraft has orbited a dwarf planet. Previously, the spacecraft explored giant asteroid Vesta for 14 months from 2011 to 2012. Dawn has the distinction of being the only spacecraft to orbit two extraterrestrial targets.

Ceres, with an average diameter of about 590 miles (950 kilometers), is the largest body in the main asteroid belt between Mars and Jupiter. Dawn has been using its ion propulsion system to maneuver to its first science orbit at Ceres, which it will reach on April 23. The spacecraft will remain at a distance of 8,400 miles (13,500 kilometers) from the dwarf planet until May 9. Afterward, it will make its way to lower orbits.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 04-20-2015 09:34 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Ceres' Bright Spots Come Back Into View

The two brightest spots on dwarf planet Ceres, which have fascinated scientists for months, are back in view in the newest images from NASA's Dawn spacecraft. Dawn took these images on April 14 and 15 from a vantage point 14,000 miles (22,000 kilometers) above Ceres’ north pole.

The images show the brightest spot and its companion clearly standing out against their darker surroundings, but their composition and sources are still unknown. Scientists also see other interesting features, including heavy cratering. As Dawn gets closer to Ceres, surface features will continue to emerge at increasingly better resolution.

Dawn has now finished delivering the images that have helped mission planners maneuver the spacecraft to its first science orbit and prepare for subsequent observations. All of the approach operations have executed flawlessly and kept Dawn on course and on schedule. Beginning April 23, Dawn will spend about three weeks in a near-circular orbit around Ceres, taking observations from 8,400 miles (13,500 kilometers) above the surface. On May 9, Dawn will begin to make its way to lower orbits to improve the view and provide higher-resolution observations.

"The approach imaging campaign has completed successfully by giving us a preliminary, tantalizing view of the world Dawn is about to start exploring in detail. It has allowed us to start asking some new and intriguing questions," said Marc Rayman, Dawn's mission director and chief engineer, based at NASA's Jet Propulsion Laboratory, Pasadena, California.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 04-28-2015 07:17 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA update
Dawn Enters Science Orbit

NASA's Dawn spacecraft entered into its first science orbit on April 23 as scheduled.

Following a delay in communicating a command sequence, Dawn briefly entered into safe mode and awaited further instructions, which were sent by mission controllers. As of early the next day (April 24), the spacecraft returned to normal operating mode and the mission team continued to prepare for science data collection.

Dawn began its science operations April 24 at 10:25 p.m. EDT (0225 GMT April 25).

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 05-11-2015 09:13 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Ceres Animation Showcases Bright Spots

The mysterious bright spots on the dwarf planet Ceres are better resolved in a new sequence of images taken by NASA's Dawn spacecraft on May 3 and 4, 2015. The images were taken from a distance of 8,400 miles (13,600 kilometers). The animation is available at here.

In this closest-yet view, the brightest spots within a crater in the northern hemisphere are revealed to be composed of many smaller spots. However, their exact nature remains unknown.

"Dawn scientists can now conclude that the intense brightness of these spots is due to the reflection of sunlight by highly reflective material on the surface, possibly ice," said Christopher Russell, principal investigator for the Dawn mission from the University of California, Los Angeles.

These images offer scientists new insights into crater shapes and sizes, and a host of other intriguing geological features on the surface. The image resolution is 0.8 mile (1.3 kilometers) per pixel.

Dawn has now concluded its first mapping orbit, in which it completed one 15-day full circle around Ceres while making a host of new observations with its scientific instruments. On May 9, the spacecraft powered on its ion engine to begin the month-long descent toward its second mapping orbit, which it will enter on June 6. In this next phase, Dawn will circle Ceres about every three days at an altitude of 2,700 miles (4,400 kilometers) — three times closer than the previous orbit. During this phase, referred to as Dawn's survey orbit, the spacecraft will comprehensively map the surface to begin unraveling Ceres' geologic history and assess whether the dwarf planet is active. The spacecraft will pause twice to take images of Ceres as it spirals down into this new orbit.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 06-08-2015 10:23 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA video release
Fly Over Dwarf Planet Ceres

A new video animation of dwarf planet Ceres, based on images taken by NASA's Dawn spacecraft, provides dramatic flyover views of this heavily cratered, mysterious world.

The images come from Dawn's first mapping orbit at Ceres, at an altitude of 8,400 mile (13,600 kilometers), as well as navigational images taken from 3,200 miles (5,100 kilometers) away. The images provided information for a three-dimensional terrain model. The vertical dimension has been exaggerated by a factor of two, and a star field has been added in the background.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 07-28-2015 01:01 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
New Names and Insights at Ceres

Colorful new maps of Ceres, based on data from NASA's Dawn spacecraft, showcase a diverse topography, with height differences between crater bottoms and mountain peaks as great as 9 miles (15 kilometers).

Scientists continue to analyze the latest data from Dawn as the spacecraft makes its way to its third mapping orbit.

"The craters we find on Ceres, in terms of their depth and diameter, are very similar to what we see on Dione and Tethys, two icy satellites of Saturn that are about the same size and density as Ceres. The features are pretty consistent with an ice-rich crust," said Dawn science team member Paul Schenk, a geologist at the Lunar and Planetary Institute, Houston.

Some of these craters and other features now have official names, inspired by spirits and deities relating to agriculture from a variety of cultures. The International Astronomical Union recently approved a batch of names for features on Ceres.

The newly labeled features include Occator, the mysterious crater containing Ceres' brightest spots, which has a diameter of about 60 miles (90 kilometers) and a depth of about 2 miles (4 kilometers). Occator is the name of the Roman agriculture deity of harrowing, a method of leveling soil.

A smaller crater with bright material, previously labeled "Spot 1," is now identified as Haulani, after the Hawaiian plant goddess. Haulani has a diameter of about 20 miles (30 kilometers). Temperature data from Dawn's visible and infrared mapping spectrometer show that this crater seems to be colder than most of the territory around it.

Dantu crater, named after the Ghanaian god associated with the planting of corn, is about 75 miles (120 kilometers) across and 3 miles (5 kilometers) deep. A crater called Ezinu, after the Sumerian goddess of grain, is about the same size. Both are less than half the size of Kerwan, named after the Hopi spirit of sprouting maize, and Yalode, a crater named after the African Dahomey goddess worshipped by women at harvest rites.

"The impact craters Dantu and Ezinu are extremely deep, while the much larger impact basins Kerwan and Yalode exhibit much shallower depth, indicating increasing ice mobility with crater size and age," said Ralf Jaumann, a Dawn science team member at the German Aerospace Center (DLR) in Berlin.

Above: This color-coded map from NASA's Dawn mission shows the highs and lows of topography on the surface of dwarf planet Ceres. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

Almost directly south of Occator is Urvara, a crater named for the Indian and Iranian deity of plants and fields. Urvara, about 100 miles (160 kilometers) wide and 3 miles (6 kilometers) deep, has a prominent central pointy peak that is 2 miles (3 kilometers) high.

Dawn is currently spiraling toward its third science orbit, 900 miles (less than 1,500 kilometers) above the surface, or three times closer to Ceres than its previous orbit. The spacecraft will reach this orbit in mid-August and begin taking images and other data again.

Ceres, with a diameter of 584 miles (940 kilometers), is the largest object in the main asteroid belt, located between Mars and Jupiter. This makes Ceres about 40 percent the size of Pluto, another dwarf planet, which NASA's New Horizons mission flew by earlier this month.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 08-25-2015 12:46 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Dawn Sends Sharper Scenes from Ceres

The closest-yet views of Ceres, delivered by NASA's Dawn spacecraft, show the small world's features in unprecedented detail, including Ceres' tall, conical mountain; crater formation features and narrow, braided fractures.

Above: NASA's Dawn spacecraft spotted this tall, conical mountain on Ceres from a distance of 915 miles (1,470 kilometers). The mountain, located in the southern hemisphere, stands 4 miles (6 kilometers) high. Its perimeter is sharply defined, with almost no accumulated debris at the base of the brightly streaked slope. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

"Dawn is performing flawlessly in this new orbit as it conducts its ambitious exploration. The spacecraft's view is now three times as sharp as in its previous mapping orbit, revealing exciting new details of this intriguing dwarf planet," said Marc Rayman, Dawn's chief engineer and mission director, based at NASA's Jet Propulsion Laboratory, Pasadena, California.

At its current orbital altitude of 915 miles (1,470 kilometers), Dawn takes 11 days to capture and return images of Ceres' whole surface. Each 11-day cycle consists of 14 orbits. Over the next two months, the spacecraft will map the entirety of Ceres six times.

The spacecraft is using its framing camera to extensively map the surface, enabling 3-D modeling. Every image from this orbit has a resolution of 450 feet (140 meters) per pixel, and covers less than 1 percent of the surface of Ceres.

Above: NASA's Dawn spacecraft took this image that shows a mountain ridge, near lower left, that lies in the center of Urvara crater on Ceres. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

At the same time, Dawn's visible and infrared mapping spectrometer is collecting data that will give scientists a better understanding of the minerals found on Ceres' surface.

Engineers and scientists will also refine their measurements of Ceres' gravity field, which will help mission planners in designing Dawn's next orbit — its lowest — as well as the journey to get there. In late October, Dawn will begin spiraling toward this final orbit, which will be at an altitude of 230 miles (375 kilometers).

Above: NASA's Dawn Spacecraft took this image of Gaue crater, the large crater on the bottom, on Ceres. Gaue is a Germanic goddess to whom offerings are made in harvesting rye. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 12-09-2015 05:45 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
New Clues to Ceres' Bright Spots and Origins

Ceres reveals some of its well-kept secrets in two new studies in the journal Nature, thanks to data from NASA's Dawn spacecraft. They include highly anticipated insights about mysterious bright features found all over the dwarf planet's surface.

In one study, scientists identify this bright material as a kind of salt. The second study suggests the detection of ammonia-rich clays, raising questions about how Ceres formed.

About the Bright Spots

Ceres has more than 130 bright areas, and most of them are associated with impact craters. Study authors, led by Andreas Nathues at Max Planck Institute for Solar System Research, Göttingen, Germany, write that the bright material is consistent with a type of magnesium sulfate called hexahydrite. A different type of magnesium sulfate is familiar on Earth as Epsom salt.

Nathues and colleagues, using images from Dawn's framing camera, suggest that these salt-rich areas were left behind when water-ice sublimated in the past. Impacts from asteroids would have unearthed the mixture of ice and salt, they say.

"The global nature of Ceres' bright spots suggests that this world has a subsurface layer that contains briny water-ice," Nathues said.

A New Look at Occator

The surface of Ceres, whose average diameter is 584 miles (940 kilometers), is generally dark -- similar in brightness to fresh asphalt -- study authors wrote. The bright patches that pepper the surface represent a large range of brightness, with the brightest areas reflecting about 50 percent of sunlight shining on the area. But there has not been unambiguous detection of water ice on Ceres; higher-resolution data are needed to settle this question.

The inner portion of a crater called Occator contains the brightest material on Ceres. Occator itself is 60 miles (90 kilometers) in diameter, and its central pit, covered by this bright material, measures about 6 miles (10 kilometers) wide and 0.3 miles (0.5 kilometers) deep. Dark streaks, possibly fractures, traverse the pit. Remnants of a central peak, which was up to 0.3 miles (0.5 kilometers) high, can also be seen.

With its sharp rim and walls, and abundant terraces and landslide deposits, Occator appears to be among the youngest features on Ceres. Dawn mission scientists estimate its age to be about 78 million years old.

Study authors write that some views of Occator appear to show a diffuse haze near the surface that fills the floor of the crater. This may be associated with observations of water vapor at Ceres by the Herschel space observatory that were reported in 2014. The haze seems to be present in views during noon, local time, and absent at dawn and dusk, study authors write. This suggests that the phenomenon resembles the activity at the surface of a comet, with water vapor lifting tiny particles of dust and residual ice. Future data and analysis may test this hypothesis and reveal clues about the process causing this activity.

"The Dawn science team is still discussing these results and analyzing data to better understand what is happening at Occator," said Chris Russell, principal investigator of the Dawn mission, based at the University of California, Los Angeles.

The Importance of Ammonia

In the second Nature study, members of the Dawn science team examined the composition of Ceres and found evidence for ammonia-rich clays. They used data from the visible and infrared mapping spectrometer, a device that looks at how various wavelengths of light are reflected by the surface, allowing minerals to be identified.

Ammonia ice by itself would evaporate on Ceres today, because the dwarf planet is too warm. However, ammonia molecules could be stable if present in combination with (i.e. chemically bonded to) other minerals.

The presence of ammoniated compounds raises the possibility that Ceres did not originate in the main asteroid belt between Mars and Jupiter, where it currently resides, but instead might have formed in the outer solar system. Another idea is that Ceres formed close to its present position, incorporating materials that drifted in from the outer solar system – near the orbit of Neptune, where nitrogen ices are thermally stable.

"The presence of ammonia-bearing species suggests that Ceres is composed of material accreted in an environment where ammonia and nitrogen were abundant. Consequently, we think that this material originated in the outer cold solar system,” said Maria Cristina De Sanctis, lead author of the study, based at the National Institute of Astrophysics, Rome.

In comparing the spectrum of reflected light from Ceres to meteorites, scientists found some similarities. Specifically, they focused on the spectra, or chemical fingerprints, of carbonaceous chondrites, a type of carbon-rich meteorite thought to be relevant analogues for the dwarf planet. But these are not good matches for all wavelengths that the instrument sampled, the team found. In particular, there were distinctive absorption bands, matching mixtures containing ammoniated minerals, associated with wavelengths that can't be observed from Earth-based telescopes.

The scientists note another difference is that these carbonaceous chondrites have bulk water contents of 15 to 20 percent, while Ceres' content is as much as 30 percent.

"Ceres may have retained more volatiles than these meteorites, or it could have accreted the water from volatile-rich material," De Sanctis said.

The study also shows that daytime surface temperatures on Ceres span from minus 136 degrees to minus 28 degrees Fahrenheit (180 to 240 Kelvin). The maximum temperatures were measured in the equatorial region. The temperatures at and near the equator are generally too high to support ice at the surface for a long time, study authors say, but data from Dawn's next orbit will reveal more details.

As of this week, Dawn has reached its final orbital altitude at Ceres, about 240 miles (385 kilometers) from the surface of the dwarf planet. In mid-December, Dawn will begin taking observations from this orbit, including images at a resolution of 120 feet (35 meters) per pixel, infrared, gamma ray and neutron spectra, and high-resolution gravity data.

SpaceAholic
Member

Posts: 4437
From: Sierra Vista, Arizona
Registered: Nov 1999

posted 01-14-2016 05:38 AM     Click Here to See the Profile for SpaceAholic   Click Here to Email SpaceAholic     Edit/Delete Message   Reply w/Quote
NASA release
New Details on Ceres Seen in Dawn Images

Features on dwarf planet Ceres that piqued the interest of scientists throughout 2015 stand out in exquisite detail in the latest images from NASA's Dawn spacecraft, which recently reached its lowest-ever altitude at Ceres.

Above: This image from NASA's Dawn spacecraft shows Kupalo Crater, one of the youngest craters on Ceres.

Dawn took these images near its current altitude of 240 miles (385 kilometers) from Ceres, between Dec. 19 and 23, 2015.

Kupalo Crater, one of the youngest craters on Ceres, shows off many fascinating attributes at the high image resolution of 120 feet (35 meters) per pixel. The crater has bright material exposed on its rim, which could be salts, and its flat floor likely formed from impact melt and debris. Researchers will be looking closely at whether this material is related to the "bright spots" of Occator Crater. Kupalo, which measures 16 miles (26 kilometers) across and is located at southern mid-latitudes, is named for the Slavic god of vegetation and harvest.

"This crater and its recently-formed deposits will be a prime target of study for the team as Dawn continues to explore Ceres in its final mapping phase," said Paul Schenk, a Dawn science team member at the Lunar and Planetary Institute, Houston.

Dawn's low vantage point also captured the dense network of fractures on the floor of 78-mile-wide (126-kilometer-wide) Dantu Crater. One of the youngest large craters on Earth's moon, called Tycho, has similar fractures. This cracking may have resulted from the cooling of impact melt, or when the crater floor was uplifted after the crater formed.

Above: The fractured floor of Dantu Crater on Ceres is seen in this image from NASA's Dawn spacecraft.

A 20-mile (32-kilometer) crater west of Dantu is covered in steep slopes, called scarps, and ridges. These features likely formed when the crater partly collapsed during the formation process. The curvilinear nature of the scarps resembles those on the floor of Rheasilvia, the giant impact crater on protoplanet Vesta, which Dawn orbited from 2011 to 2012.

Dawn's other instruments also began studying Ceres intensively in mid-December. The visible and infrared mapping spectrometer is examining how various wavelengths of light are reflected by Ceres, which will help identify minerals present on its surface.

Dawn's gamma ray and neutron detector (GRaND) is also keeping scientists busy. Data from GRaND help researchers understand the abundances of elements in Ceres' surface, along with details of the dwarf planet's composition that hold important clues about how it evolved.

Above: NASA's Dawn spacecraft viewed this Cerean crater, which is covered in ridges and steep slopes, called scarps on Dec. 23, 2015.

The spacecraft will remain at its current altitude for the rest of its mission, and indefinitely afterward. The end of the prime mission will be June 30, 2016.

"When we set sail for Ceres upon completing our Vesta exploration, we expected to be surprised by what we found on our next stop. Ceres did not disappoint," said Chris Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles. "Everywhere we look in these new low- altitude observations, we see amazing landforms that speak to the unique character of this most amazing world."

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 03-23-2016 12:13 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Bright Spots and Color Differences Revealed on Ceres

Scientists from NASA's Dawn mission unveiled new images from the spacecraft's lowest orbit at Ceres, including highly anticipated views of Occator Crater, at the 47th annual Lunar and Planetary Science Conference in The Woodlands, Texas, on Tuesday (March 22).

Occator Crater, measuring 57 miles (92 kilometers) across and 2.5 miles (4 kilometers) deep, contains the brightest area on Ceres, the dwarf planet that Dawn has explored since early 2015. The latest images, taken from 240 miles (385 kilometers) above the surface of Ceres, reveal a dome in a smooth-walled pit in the bright center of the crater. Numerous linear features and fractures crisscross the top and flanks of this dome. Prominent fractures also surround the dome and run through smaller, bright regions found within the crater.

Above: The bright spots of Occator Crater are shown in enhanced color in this view from NASA's Dawn spacecraft.

"Before Dawn began its intensive observations of Ceres last year, Occator Crater looked to be one large bright area. Now, with the latest close views, we can see complex features that provide new mysteries to investigate," said Ralf Jaumann, planetary scientist and Dawn co-investigator at the German Aerospace Center (DLR) in Berlin. "The intricate geometry of the crater interior suggests geologic activity in the recent past, but we will need to complete detailed geologic mapping of the crater in order to test hypotheses for its formation."

Color Differences

The team also released an enhanced color map of the surface of Ceres, highlighting the diversity of surface materials and their relationships to surface morphology. Scientists have been studying the shapes of craters and their distribution with great interest. Ceres does not have as many large impact basins as scientists expected, but the number of smaller craters generally matches their predictions. The blue material highlighted in the color map is related to flows, smooth plains and mountains, which appear to be very young surface features.

Above: Ceres' Haulani Crater (21 miles, 34 kilometers wide) is shown in these views from the visible and infrared mapping spectrometer (VIR) aboard NASA's Dawn spacecraft.

"Although impact processes dominate the surface geology on Ceres, we have identified specific color variations on the surface indicating material alterations that are due to a complex interaction of the impact process and the subsurface composition," Jaumann said. "Additionally, this gives evidence for a subsurface layer enriched in ice and volatiles."

Counting Neutrons

Data relevant to the possibility of subsurface ice is also emerging from Dawn's Gamma Ray and Neutron Detector (GRaND), which began acquiring its primary data set in December. Neutrons and gamma rays produced by cosmic ray interactions with surface materials provide a fingerprint of Ceres’ chemical makeup. The measurements are sensitive to elemental composition of the topmost yard (meter) of the regolith.

Above: This map shows a portion of the northern hemisphere of Ceres with neutron counting data acquired by the gamma ray and neutron detector (GRaND) instrument aboard NASA's Dawn spacecraft.

In Dawn's lowest-altitude orbit, the instrument has detected fewer neutrons near the poles of Ceres than at the equator, which indicates increased hydrogen concentration at high latitudes. As hydrogen is a principal constituent of water, water ice could be present close to the surface in polar regions.

"Our analyses will test a longstanding prediction that water ice can survive just beneath Ceres' cold, high-latitude surface for billions of years," said Tom Prettyman, the lead for GRaND and Dawn co-investigator at the Planetary Science Institute, Tucson, Arizona.

The Mystery of Haulani Crater

But the subsurface does not have the same composition all over Ceres, according to data from the visible and infrared mapping spectrometer (VIR), a device that looks at how various wavelengths of sunlight are reflected by the surface, allowing scientists to identify minerals.

Haulani Crater in particular is an intriguing example of how diverse Ceres is in terms of its surface material composition. This irregularly-shaped crater, with its striking bright streaks of material, shows a different proportion of surface materials than its surroundings when viewed with the VIR instrument. While the surface of Ceres is mostly made of a mixture of materials containing carbonates and phyllosilicates, their relative proportion varies across the surface.

"False-color images of Haulani show that material excavated by an impact is different than the general surface composition of Ceres. The diversity of materials implies either that there is a mixed layer underneath, or that the impact itself changed the properties of the materials," said Maria Cristina de Sanctis, the VIR instrument lead scientist, based at the National Institute of Astrophysics, Rome.

Water at Oxo

Dawn scientists also reported in an LPSC scientific session that the VIR instrument has detected water at Oxo Crater, a young, 6-mile-wide (9-kilometer-wide) feature in Ceres' northern hemisphere. This water could be bound up in minerals or, alternatively, it could take the form of ice.

Jean-Philippe Combe of the Bear Fight Institute, Winthrop, Washington, said that this water-bearing material could have been exposed during a landslide or an impact -- perhaps even a combination of the two events.

Oxo is the only place on Ceres where water has been detected at the surface so far. Dawn will continue to observe this area.

The Big Picture

Above: This map shows a portion of the northern hemisphere of Ceres with neutron counting data acquired by the gamma ray and neutron detector (GRaND) instrument aboard NASA's Dawn spacecraft.

Dawn made history last year as the first mission to reach a dwarf planet, and the first to orbit two distinct extraterrestrial targets -- both of them in the main asteroid belt between Mars and Jupiter. The mission conducted extensive observations of Vesta during its 14-month orbit there in 2011-2012.

"We're excited to unveil these beautiful new images, especially Occator, which illustrate the complexity of the processes shaping Ceres' surface. Now that we can see Ceres’ enigmatic bright spots, surface minerals and morphology in high resolution, we're busy working to figure out what processes shaped this unique dwarf planet. By comparing Ceres with Vesta, we'll glean new insights about the early solar system," said Carol Raymond, deputy principal investigator for the Dawn mission, based at NASA's Jet Propulsion Laboratory, Pasadena, California.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 06-30-2016 07:50 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Dawn Completes Primary Mission

On June 30, just in time for the global celebration known as Asteroid Day, NASA's Dawn spacecraft completes its primary mission. The mission exceeded all expectations originally set for its exploration of protoplanet Vesta and dwarf planet Ceres.

The historic mission is the first to orbit two extraterrestrial solar system targets, and the first to orbit any object in the main asteroid belt, between Mars and Jupiter. On March 6, 2015, Dawn also became the first spacecraft to enter orbit around a dwarf planet.

An infographic highlights some of the accomplishments of Dawn's journey since launching in September 2007. Dawn has traveled 3.5 billion miles (5.6 billion kilometers) since launch, and has made 2,450 orbits around Vesta and Ceres. The spacecraft has returned about 69,000 images, combined, of both bodies.

Dawn's advanced ion propulsion system made it possible for the spacecraft to orbit two targets in the main asteroid belt. The spacecraft has logged about 48,000 hours of ion engine thrusting.

Scientists have learned a great deal about these unique, massive residents of the asteroid belt through data from the mission. Dawn has revealed that while Vesta is a dry body, Ceres could be as much as 25 percent water ice by mass. Dawn also discovered many intriguing features at both bodies -- Vesta is home to a mountain whose height is more than twice that of Mount Everest, and Ceres has a crater called Occator with mysterious bright features that continue to spark scientific investigation.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 07-01-2016 03:33 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
From a NASA release:
NASA determined that the Dawn spacecraft should remain at the dwarf planet Ceres, rather than changing course to the main belt asteroid Adeona.

Green noted that NASA relies on the scientific assessment by the Senior Review Panel in making its decision on which extended mission option to approve. "The long-term monitoring of Ceres, particularly as it gets closer to perihelion — the part of its orbit with the shortest distance to the sun — has the potential to provide more significant science discoveries than a flyby of Adeona," he said.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 07-26-2016 01:29 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
The Case of the Missing Ceres Craters

Ceres is covered in countless small, young craters, but none are larger than 175 miles (280 kilometers) in diameter. To scientists, this is a huge mystery, given that the dwarf planet must have been hit by numerous large asteroids during its 4.5 billion-year lifetime. Where did all the large craters go?

A new study in the journal Nature Communications explores this puzzle of Ceres' missing large craters, using data from NASA's Dawn spacecraft, which has been orbiting Ceres since March 2015.

"We concluded that a significant population of large craters on Ceres has been obliterated beyond recognition over geological time scales, which is likely the result of Ceres' peculiar composition and internal evolution," said lead investigator Simone Marchi, a senior research scientist at the Southwest Research Institute in Boulder, Colorado.

Marchi and colleagues modeled collisions of other bodies with Ceres since the dwarf planet formed, and predicted the number of large craters that should have been present on its surface. These models predicted Ceres should have up to 10 to 15 craters larger than 250 miles (400 kilometers) in diameter, and at least 40 craters larger than 60 miles (100 kilometers) wide. However, Dawn has shown that Ceres has only 16 craters larger than 60 miles, and none larger than 175 miles (280 kilometers) across.

One idea about Ceres' origins holds that it formed farther out in the solar system, perhaps in the vicinity of Neptune, but migrated in to its present location. However, scientists determined that even if Ceres migrated into the main asteroid belt relatively late in solar system history, it should still have a significant number of large craters.

"Whatever the process or processes were, this obliteration of large craters must have occurred over several hundred millions of years," Marchi said.

Dawn's images of Ceres reveal that the dwarf planet has at least three large-scale depressions called "planitiae" that are up to 500 miles (800 kilometers) wide. These planitiae have craters in them that formed in more recent times, but the larger depressions could be left over from bigger impacts. One of them, called Vendimia Planitia, is a sprawling area just north of Kerwan crater, Ceres' largest well-defined impact basin. Vendimia Planitia must have formed much earlier than Kerwan.

One reason for the lack of large craters could be related the interior structure of Ceres. There is evidence from Dawn that the upper layers of Ceres contain ice. Because ice is less dense than rock, the topography could "relax," or smooth out, more quickly if ice or another lower-density material, such as salt, dominates the subsurface composition. Recent analysis of the center of Ceres' Occator Crater suggests that the salts found there could be remnants of a frozen ocean under the surface, and that liquid water could have been present in Ceres' interior.

Past hydrothermal activity, which may have influenced the salts rising to the surface at Occator, could also have something to do with the erasure of craters. If Ceres had widespread cryovolcanic activity in the past — the eruption of volatiles such as water — these cryogenic materials also could have flowed across the surface, possibly burying pre-existing large craters. Smaller impacts would have then created new craters on the resurfaced area.

"Somehow Ceres has healed its largest impact scars and renewed old, cratered surfaces," Marchi said.

Ceres differs from Dawn's previous destination, protoplanet Vesta, in terms of cratering. Although Vesta is only half the size of Ceres, it has a well-preserved 300-mile- (500-kilometer) -wide crater called Rheasilvia, where an impacting asteroid knocked out a huge chunk of the body. This and other large craters suggest that Vesta has not had processes at work to smooth its surface, perhaps because it is thought to have much less ice. Dawn visited Vesta for 14 months from 2011 to 2012.

"The ability to compare these two very different worlds in the asteroid belt — Vesta and Ceres — is one of the great strengths of the Dawn mission," Marchi said.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 08-31-2016 02:49 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Dawn Sets Course for Higher Orbit

After studying Ceres for more than eight months from its low-altitude science orbit, NASA's Dawn spacecraft will move higher up for different views of the dwarf planet.

Dawn has delivered a wealth of images and other data from its current perch at 240 miles (385 kilometers) above Ceres' surface, which is closer to the dwarf planet than the International Space Station is to Earth. Now, the mission team is pivoting to consider science questions that can be examined from higher up.

After Dawn completed its prime mission on June 30, having surpassed all of its scientific objectives at Vesta and at Ceres, NASA extended the mission to perform new studies of Ceres. One of the factors limiting Dawn's lifetime is the amount of hydrazine, the propellant needed to orient the spacecraft to observe Ceres and communicate with Earth. By going to a higher orbit at Ceres, Dawn will use the remaining hydrazine more sparingly, because it won't have to work as hard to counter Ceres' gravitational pull.

"Most spacecraft wouldn't be able to change their orbital altitude so easily. But thanks to Dawn's uniquely capable ion propulsion system, we can maneuver the ship to get the greatest scientific return from the mission," said Marc Rayman, chief engineer and mission director, based at NASA's Jet Propulsion Laboratory, Pasadena, California.

On Sept. 2, Dawn will begin spiraling upward to about 910 miles (1,460 kilometers) from Ceres. The altitude will be close to where Dawn was a year ago, but the orientation of the spacecraft's orbit — specifically, the angle between the orbit plane and the sun — will be different this time, so the spacecraft will have a different view of the surface.

The mission team is continuing to develop the extended mission itinerary and will submit a full plan to NASA next month.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 04-27-2017 10:41 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Dawn Observing Ceres; 3rd Reaction Wheel Malfunctions

NASA's Dawn spacecraft is preparing to observe Ceres on April 29 from an "opposition" position, directly between the dwarf planet's mysterious Occator Crater and the sun. This unique geometry may yield new insights about the bright material in the center of the crater.

While preparing for this observation, one of Dawn's two remaining reaction wheels stopped functioning on April 23. By electrically changing the speed at which these gyroscope-like devices spin, Dawn controls its orientation in the zero-gravity, frictionless conditions of space.

The team discovered the situation during a scheduled communications session on April 24, diagnosed the problem, and returned the spacecraft to its standard flight configuration, still with hydrazine control, on April 25. The failure occurred after Dawn completed its five-hour segment of ion thrusting on April 22 to adjust its orbit, but before the shorter maneuver scheduled for April 23-24. The orbit will still allow Dawn to perform its opposition measurements. The reaction wheel's malfunctioning will not significantly impact the rest of the extended mission at Ceres.

Dawn completed its prime mission in June 2016, and is now in an extended mission. It has been studying Ceres for more than two years, and before that, the spacecraft orbited giant asteroid Vesta, sending back valuable data and images. Dawn launched in 2007.

The Dawn operations team has been well prepared to deal with the loss of the reaction wheel. The spacecraft is outfitted with four reaction wheels. It experienced failures of one of the wheels in 2010, a year before it entered orbit around Vesta, and another in 2012, as it was completing its exploration of that fascinating world. (See issues with these devices). When a third reaction wheel stopped working this week, the spacecraft correctly responded by entering one of its safe modes and assigning control of its orientation to its hydrazine thrusters.

Today (April 26), Dawn's elliptical orbit will bring it from an altitude of 17,300 miles (27,900 kilometers) to 15,800 miles (25,400 kilometers) above Ceres.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 09-27-2017 04:26 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Dawn Mission Celebrates 10 Years in Space

Ten years ago, NASA's Dawn spacecraft set sail for the two most massive bodies in the asteroid belt between Mars and Jupiter: giant asteroid Vesta and dwarf planet Ceres. The mission was designed to deliver new knowledge about these small but intricate worlds, which hold clues to the formation of planets in our solar system.

"Our interplanetary spaceship has exceeded all expectations in the last decade, delivering amazing insights about these two fascinating bodies," said Chris Russell, principal investigator of the Dawn mission, based at the University of California, Los Angeles.

Since its launch on Sept. 27, 2007, Dawn has achieved numerous technical and scientific feats while traveling 4 billion miles (6 billion kilometers). It is the only spacecraft to orbit two extraterrestrial solar system targets. It is also the only spacecraft to orbit a dwarf planet, a milestone it achieved when in entered orbit around Ceres on March 6, 2015. The spacecraft's ion propulsion system enabled Dawn to study each of these worlds from a variety of vantage points and altitudes, creating an impressive scrapbook of 88,000 photos. Additionally, Dawn's suite of instruments enabled it to take a variety of other measurements of Vesta and Ceres, revealing the contrasting compositions and internal structures of these two bodies.

Vesta Highlights

Scientists learned a great deal about Vesta's geological features and composition during Dawn's 14 months of exploration there. A notable discovery was that Rheasilvia, a giant basin in Vesta's southern hemisphere, was even deeper and wider than scientists expected based on telescopic observations from Earth. It spans more than 310 miles (500 kilometers) and pierces about 12 miles (19 kilometers) into Vesta. The center of the crater also hosts a mountain twice the height of Mt. Everest -- the tallest feature seen in Dawn's 1,298 orbits of Vesta.

The massive punch into Vesta that carved out this crater happened about 1 billion years ago and caused huge amounts of material to rain down on the surface. The net result is that the surface of the southern hemisphere of Vesta is younger than the northern hemisphere, which retains a hefty record of craters. The Rheasilvia impact also created dozens of gorges circling Vesta's equator. Canyons there, some of which formed from an earlier impact, measure up to 290 miles (465 kilometers) in length.

Ceres Highlights

One of Dawn's biggest revelations at Ceres is the extremely bright, salty material in Occator Crater that gleams amid an otherwise dark area. What appeared to be a single white blob at a distance turned out to be a smattering of many bright areas called faculae. The central bright area, Cerealia Facula, has a dome at its center with radial fractures across it that appears reddish in enhanced color images. This "bright spot" suggests Ceres was geologically active in the very recent past, when briny water rose to the surface and deposited salts. Just to the east are the Vinalia Faculae, a constellation of less-bright spots distributed along fractures that also intrigue scientists. Ceres hosts more than 300 small bright areas, with some thought to host ice at northern latitudes.

Another huge surprise at Ceres was Ahuna Mons, which scientists believe formed as a cryovolcano, a volcano that erupted with salty water in the past. This "lonely mountain," 3 miles (5 kilometers) high on its steepest side, is unlike anything else on Ceres and remains a thriving research topic. Though both Ahuna Mons and Occator appear dormant, they suggest that liquid water flowed once beneath the surface of Ceres, and may even still be there today, if it is enriched in salts that would lower its freezing point.

Dawn Science Continues

"The science team is still actively exploring the troves of data that Dawn has delivered so far, comparing these two fossils of the early solar system," said Carol Raymond, Dawn deputy principal investigator, based at NASA's Jet Propulsion Laboratory, Pasadena, California.

Since March 2015, Dawn has orbited Ceres 1,595 times. It remains healthy, currently in a 30-day elliptical orbit collecting data on cosmic rays in the vicinity of Ceres.

"This continues to be a mission for everyone who yearns for new knowledge, everyone who is curious about the cosmos, and everyone who is exhilarated by bold adventures into the unknown," said Marc Rayman, mission director and chief engineer, based at JPL.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 10-19-2017 01:48 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Dawn Mission Extended at Ceres

NASA has authorized a second extension of the Dawn mission at Ceres, the largest object in the asteroid belt between Mars and Jupiter. During this extension, the spacecraft will descend to lower altitudes than ever before at the dwarf planet, which it has been orbiting since March 2015. The spacecraft will continue at Ceres for the remainder of its science investigation and will remain in a stable orbit indefinitely after its hydrazine fuel runs out.

The Dawn flight team is studying ways to maneuver Dawn into a new elliptical orbit, which may take the spacecraft to less than 120 miles (200 kilometers) from the surface of Ceres at closest approach. Previously, Dawn's lowest altitude was 240 miles (385 kilometers).

A priority of the second Ceres mission extension is collecting data with Dawn's gamma ray and neutron spectrometer, which measures the number and energy of gamma rays and neutrons. This information is important for understanding the composition of Ceres' uppermost layer and how much ice it contains.

The spacecraft also will take visible-light images of Ceres' surface geology with its camera, as well as measurements of Ceres’ mineralogy with its visible and infrared mapping spectrometer.

The extended mission at Ceres additionally allows Dawn to be in orbit while the dwarf planet goes through perihelion, its closest approach to the Sun, which will occur in April 2018. At closer proximity to the Sun, more ice on Ceres' surface may turn to water vapor, which may in turn contribute to the weak transient atmosphere detected by the European Space Agency's Herschel Space Observatory before Dawn's arrival. Building on Dawn’s findings, the team has hypothesized that water vapor may be produced in part from energetic particles from the Sun interacting with ice in Ceres’ shallow surface. Scientists will combine data from ground-based observatories with Dawn's observations to further study these phenomena as Ceres approaches perihelion.

The Dawn team is currently refining its plans for this next and final chapter of the mission. Because of its commitment to protect Ceres from Earthly contamination, Dawn will not land or crash into Ceres. Instead, it will carry out as much science as it can in its final planned orbit, where it will stay even after it can no longer communicate with Earth. Mission planners estimate the spacecraft can continue operating until the second half of 2018.

Dawn is the only mission ever to orbit two extraterrestrial targets. It orbited giant asteroid Vesta for 14 months from 2011 to 2012, then continued on to Ceres, where it has been in orbit since March 2015.

Robert Pearlman
Editor

Posts: 42988
From: Houston, TX
Registered: Nov 1999

posted 10-26-2017 12:23 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Dawn Finds Possible Ancient Ocean Remnants at Ceres

Minerals containing water are widespread on Ceres, suggesting the dwarf planet may have had a global ocean in the past. What became of that ocean? Could Ceres still have liquid today? Two new studies from NASA's Dawn mission shed light on these questions.

Above: This animation shows dwarf planet Ceres as seen by NASA's Dawn. The map overlaid at right gives scientists hints about Ceres' internal structure from gravity measurements. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

The Dawn team found that Ceres' crust is a mixture of ice, salts and hydrated materials that were subjected to past and possibly recent geologic activity, and that this crust represents most of that ancient ocean. The second study builds off the first and suggests there is a softer, easily deformable layer beneath Ceres' rigid surface crust, which could be the signature of residual liquid left over from the ocean, too.

"More and more, we are learning that Ceres is a complex, dynamic world that may have hosted a lot of liquid water in the past, and may still have some underground," said Julie Castillo-Rogez, Dawn project scientist and co-author of the studies, based at NASA's Jet Propulsion Laboratory, Pasadena, California.

What's inside Ceres? Gravity will tell.

Landing on Ceres to investigate its interior would be technically challenging and would risk contaminating the dwarf planet. Instead, scientists use Dawn's observations in orbit to measure Ceres' gravity, in order to estimate its composition and interior structure.

The first of the two studies, led by Anton Ermakov, a postdoctoral researcher at JPL, used shape and gravity data measurements from the Dawn mission to determine the internal structure and composition of Ceres. The measurements came from observing the spacecraft's motions with NASA's Deep Space Network to track small changes in the spacecraft's orbit. This study is published in the Journal of Geophysical Research.

Ermakov and his colleagues' research supports the possibility that Ceres is geologically active — if not now, then it may have been in the recent past. Three craters — Occator, Kerwan and Yalode — and Ceres' solitary tall mountain, Ahuna Mons, are all associated with "gravity anomalies." This means discrepancies between the scientists' models of Ceres' gravity and what Dawn observed in these four locations can be associated with subsurface structures.

"Ceres has an abundance of gravity anomalies associated with outstanding geologic features," Ermakov said. In the cases of Ahuna Mons and Occator, the anomalies can be used to better understand the origin of these features, which are believed to be different expressions of cryovolcanism.

The study found the crust's density to be relatively low, closer to that of ice than rocks. However, a study by Dawn guest investigator Michael Bland of the U.S. Geological Survey indicated that ice is too soft to be the dominant component of Ceres' strong crust. So, how can Ceres' crust be as light as ice in terms of density, but simultaneously much stronger? To answer this question, another team modeled how Ceres' surface evolved with time.

A 'Fossil' Ocean at Ceres

The second study, led by Roger Fu at Harvard University in Cambridge, Massachusetts, investigated the strength and composition of Ceres' crust and deeper interior by studying the dwarf planet's topography. This study is published in the journal Earth and Planetary Science Letters

By studying how topography evolves on a planetary body, scientists can understand the composition of its interior. A strong, rock-dominated crust can remain unchanged over the 4.5-billion-year-old age of the solar system, while a weak crust rich in ices and salts would deform over that time.

By modeling how Ceres' crust flows, Fu and colleagues found it is likely a mixture of ice, salts, rock and an additional component believed to be clathrate hydrate. A clathrate hydrate is a cage of water molecules surrounding a gas molecule. This structure is 100 to 1,000 times stronger than water ice, despite having nearly the same density.

The researchers believe Ceres once had more pronounced surface features, but they have smoothed out over time. This type of flattening of mountains and valleys requires a high-strength crust resting on a more deformable layer, which Fu and colleagues interpret to contain a little bit of liquid.

The team thinks most of Ceres' ancient ocean is now frozen and bound up in the crust, remaining in the form of ice, clathrate hydrates and salts. It has mostly been that way for more than 4 billion years. But if there is residual liquid underneath, that ocean is not yet entirely frozen. This is consistent with several thermal evolution models of Ceres published prior to Dawn's arrival there, supporting the idea that Ceres' deeper interior contains liquid left over from its ancient ocean.


This topic is 2 pages long:   1  2 

All times are CT (US)

next newest topic | next oldest topic

Administrative Options: Close Topic | Archive/Move | Delete Topic
Post New Topic  Post A Reply
Hop to:

Contact Us | The Source for Space History & Artifacts

Copyright 2020 collectSPACE.com All rights reserved.


Ultimate Bulletin Board 5.47a





advertisement